

Lecture Notes in Computer Science 5292
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ron Morrison Dharini Balasubramaniam
Katrina Falkner (Eds.)

Software
Architecture

Second European Conference, ECSA 2008
Paphos, Cyprus, September 29–October 1, 2008
Proceedings

13

Volume Editors

Ron Morrison
Dharini Balasubramaniam
University of St Andrews
School of Computer Science
North Haugh, St Andrews, Fife KY16 9SX, UK
E-mail: {ron, dharini}@cs.st-andrews.ac.uk

Katrina Falkner
University of Adelaide
School of Computer Science
Adelaide, SA 5005, Australia
E-mail: katrina@cs.adelaide.edu.au

Library of Congress Control Number: 2008935446

CR Subject Classification (1998): D.2.11, D.3, H.2.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-88029-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88029-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12525850 06/3180 5 4 3 2 1 0

Preface

The European Conference on Software Architecture (ECSA) is the premier European
conference dedicated to the field of software architecture, covering all architectural
features of software engineering. It is the follow-up of a successful series of European
workshops on software architecture held in the UK in 2004 (Springer LNCS 3047),
Italy in 2005 (Springer LNCS 3527), and France in 2006 (Springer LNCS 4344). It
evolved into a series of European conferences whose first edition was ECSA 2007,
held in Madrid, Spain during September 24–26, 2007 (Springer LNCS 4758). This
year’s conference was held at the beautiful Coral Beach Hotel and Resort near Paphos
in Cyprus.

As with the previous versions of the conference, ECSA 2008 (Springer LNCS
5292) provided an international forum for researchers and practitioners from academia
and industry to present innovative research and to discuss a wide range of topics in the
area of software architecture. It focused on formalisms, technologies, and processes
for describing, verifying, validating, transforming, building, and evolving software
systems. Covered topics included architecture modelling, architecture description
languages, architectural aspects, architecture analysis, transformation and synthesis,
architecture evolution, quality attributes, model-driven engineering, built-in testing
and architecture-based support for component-based and service-oriented systems.

The conference attracted paper submissions from 29 countries (Australia, Belgium,
Brazil, Canada, China, Chile, Denmark, Finland, France, Germany, Greece, Ireland,
Italy, Lithuania, Luxembourg, Malta, The Netherlands, Norway, Pakistan, Peru, Po-
land, Portugal, Romania, South Africa, Spain, Turkey, the UK, USA, and Venezuela).
In all, 110 abstracts were submitted of which 83 papers were submitted via the confer-
ence website.

Each submission was reviewed by three members of the Program Committee. Papers
were selected based on originality, quality, soundness, and relevance to the conference.

The Program Committee selected papers according to four types for presentation in
paper sessions:

• Full research papers describe novel contributions to software architecture re-
search and cover work that has a sound scientific/technological basis and has
been fully validated. These are allocated 16 pages in the proceedings.

• Experience papers describe significant experiences related to software architec-
ture practice and present case studies or real-life experiences of benefit to practi-
tioners and researchers. These are allocated 16 pages in the proceedings.

• Research challenge papers present significant research challenges in theory or
practice of software architecture or the state of the art on different topics related
to software architecture. These are allocated eight pages in the proceedings.

• Emerging research papers present promising results from work-in-progress in a
topic of software architecture research and cover work that has a sound basis, but
has not yet been validated in full. These are allocated four pages in the proceedings.

 Preface

VI

The Program Committee selected 12 full research papers, 4 experience papers and
7 emerging research papers out of 83 submissions. This gives an acceptance rate of
14% for full papers, 4% for experience (long) papers, 9% for emerging research pa-
pers. In addition, 12 papers were selected to be presented as posters in Research Chal-
lenge paper sessions.

The conference included two keynote talks. The opening day keynote was pre-
sented by one of the founders of Software Architecture, Dewayne E. Perry of the Uni-
versity of Texas at Austin, USA, on “Issues in Architecture Evolution: Using Design
Intent in Maintenance and Controlling Dynamic Evolution” and the second keynote
was delivered by Colin Atkinson, from the University of Mannheim, Germany, on
“Component-Oriented Verification of Software Architectures Through Built-in Tests.”

We would like to thank the members of the Program Committee for providing
thoughtful and knowledgeable reviews and for their substantial effort in making ECSA
2008 a successful conference.

The ECSA 2008 submission and review process was extensively supported by the
EasyChair Conference Management System.

On the organizational front, we deeply acknowledge all the members of the Orga-
nizing Committee for their excellent service. Finally, we acknowledge the prompt and
professional support from Springer, who published these proceedings in printed and
electronic volumes as part of the Lecture Notes in Computer Science series.

September 2008 Ron Morrison
George A. Papadopoulos

Organization

Conference Chair

George A. Papadopoulos University of Cyprus, Cyprus
george@cs.ucy.ac.cy

Program Committee

Program Committee Chair

Ron Morrison University of St. Andrews, UK
ron@cs.st-andrews.ac.uk

Program Committee Members

Yamine Ait Ameur ENSMA, France
Dharini Balasubram University of St. Andrews, UK
Thais Batista University of Rio Grande do Norte UFRN, Brazil
Marco Bernardo University of Urbino, Italy
Antoine Beugnard ENST Bretagne, France
Jan Bosch Intu, USA
Alan W. Brown IBM Rational, USA
Carlos E. Cuesta Rey Juan Carlos University, Spain
Paulo Roberto Freire Cunha Federal University of Pernambuco, Brazil
Rogerio de Lemos University of Kent, UK
Khalil Drira LAAS-CNRS, University of Toulouse, France
Laurence Duchien INRIA and University of Lille, France
Katrina Falkner University of Adelaide, Australia
Régis Fleurquin University of South Brittany VALORIA, France
David Garlan Carnegie Mellon University, USA
Carlo Ghezzi Polytechnic of Milan, Italy
Ian Gorton Pacific Northwest National Lab, USA
Paul Grefen Eindhoven University of Technology,

The Netherlands
Volker Gruhn University of Leipzig, Germany
Wilhelm Hasselbring University of Oldenburg, Germany
Juan Hernández University of Extremadura, Spain
Paola Inverardi University of L'Aquila, Italy

 Organization VIII

René Krikhaar ICT NoviQ and Vrije Universiteit Amsterdam,
The Netherlands

Frédéric Lang INRIA Rhône-Alpes, France
Nicole Levy University of Versailles St.-Quentin en Yvelines

RiSM, France
Antonia Lopes University of Lisbon, Portugal
Jeff Magee Imperial College London, UK
Esperanza Marcos Rey Juan Carlos University, Spain
Carlo Montangero University of Pisa, Italy
Ron Morrison University of St. Andrews, UK
Robert L. Nord Software Engineering Institute, USA
Henk Obbink Philips Research Europe, The Netherlands
Flavio Oquendo University of South Brittany VALORIA, France
Mourad Oussalah University of Nantes LINA, France
Claus Pahl Dublin City University, Ireland
Mike P. Papazoglou Tilburg University, The Netherlands
Jennifer Pérez Technical University of Madrid (UPM), Spain
Dewayne E. Perry University of Texas at Austin, USA
Frantisek Plasil Charles University, Czech Republic
Eltjo Poort Logica, The Netherlands
Amar Ramdame-Cherif University of Versailles St.-Quentin en Yvelines

PRiSM, France
Isidro Ramos Polytechnic University of Valencia, Spain
Ralf Reussner University of Karlsruhe, Germany
Clemens Schäfer University of Leipzig, Germany
Bradley Schmerl Carnegie Mellon University, USA
Judith Stafford Tufts University, USA
Clemens Szyperski Microsoft Research, USA
Richard N. Taylor University of California at Irvine, USA
Miguel Toro University of Seville, Spain
J.C. (Hans) van Vliet VU University Amsterdam, The Netherlands
Brian Warboys University of Manchester, UK
Eoin Woods UBS Investment Bank, UK

Poster Sessions

Dharini Balasubramaniam University of St. Andrews, UK
Katrina Falkner University of Adelaide, Australia

Organizing Committee Members

Pyrros Bratskas University of Cyprus, Cyprus
Pericles Cheng University of Cyprus, Cyprus
Constantinos Kakousis University of Cyprus, Cyprus
Nearchos Paspallis University of Cyprus, Cyprus

 Organization IX

Steering Committee

Flavio Oquendo University of South Brittany VALORIA, France
Carlos E. Cuesta Rey Juan Carlos University, Spain
Esperanza Marcos Rey Juan Carlos University, Spain
John Favaro Consorzio Pisa Ricerche, Italy
Volker Gruhn University of Leipzig, Germany
Ron Morrison University of St. Andrews, UK
Mourad Oussalah University of Nantes LINA, France
George A. Papadopoulos University of Cyprus, Cyprus
Brian Warboys University of Manchester, UK

Table of Contents

Keynotes

Issues in Architecture Evolution: Using Design Intent in Maintenance
and Controlling Dynamic Evolution . 1

Dewayne E. Perry

Component-Oriented Verification of Software Architectures through
Built-in Tests . 2

Colin Atkinson

Full Research Papers

Non-synchronous Communications in Process Algebraic Architectural
Description Languages . 3

Marco Bernardo and Edoardo Bontà

Stakeholder Perception of Enterprise Architecture . 19
Bas van der Raadt, Sander Schouten, and Hans van Vliet

Web Services Orchestrations Evolution: A Merge Process for Behavioral
Evolution . 35

Sébastien Mosser, Mireille Blay-Fornarino, and Michel Riveill

Evaluating Domain Design Approaches Using Systematic Review 50
Ednaldo Dilorenzo de Souza Filho, Ricardo de Oliveira Cavalcanti,
Danuza F.S. Neiva, Thiago H.B. Oliveira, Liana Barachisio Lisboa,
Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira

Characterizing Relations between Architectural Views 66
Nelis Boucké, Danny Weyns, Rich Hilliard, Tom Holvoet, and
Alexander Helleboogh

How Do Agents Affect Modifiability? A Comparison between Two
Architectures for Intelligent Virtual Environments for Training 82

Gonzalo Méndez and Angélica de Antonio

An Architecture-Centric Development Environment for Black-Box
Component-Based Systems . 98

Gerald Kotonya

Automating the Trace of Architectural Design Decisions and Rationales
Using a MDD Approach . 114

Elena Navarro and Carlos E. Cuesta

XII Table of Contents

Development of Fault-Tolerant Software Systems Based on Architectural
Abstractions . 131

Patrick H.S. Brito, Rogério de Lemos, and Cećılia M.F. Rubira

Towards Interoperability in Component Based Development with a
Family of DSLs . 148

Ileana Ober, Ali Abou Dib, Louis Féraud, and Christian Percebois

Modeling Architectural Patterns’ Behavior Using Architectural
Primitives . 164

Ahmad Waqas Kamal and Paris Avgeriou

Approach for Dynamically Composing Decentralised Service
Architectures with Cross-Cutting Constraints . 180

Varvana Myllärniemi, Christian Prehofer, Mikko Raatikainen,
Jilles van Gurp, and Tomi Männistö

Experience Papers

Architectural Prototyping in Industrial Practice . 196
Henrik Bærbak Christensen and Klaus Marius Hansen

An Iterative Framework for Software Architecture Recovery: An
Experience Report . 210

Banani Roy and T.C. Nicholas Graham

Towards a Method for the Evaluation of Reference Architectures:
Experiences from a Case . 225

Samuil Angelov, Jos J.M. Trienekens, and Paul Grefen

On the Role of Architectural Design Decisions in Software Product
Line Engineering . 241

Rafael Capilla and Muhammad Ali Babar

Emerging Research Papers

Towards a Dependency Constraint Language to Manage Software
Architectures . 256

Ricardo Terra and Marco Tulio de Oliveira Valente

Automating Architecture Trade-Off Decision Making through a
Complex Multi-attribute Decision Process . 264

Majid Makki, Ebrahim Bagheri, and Ali A. Ghorbani

Representing Service-Oriented Architectural Models Using π-ADL 273
Marcos López-Sanz, Zawar Qayyum, Carlos E. Cuesta,
Esperanza Marcos, and Flavio Oquendo

Table of Contents XIII

Managing Dynamic Evolution of Architectural Types 281
Cristóbal Costa-Soria, Jennifer Pérez, and José Angel Carśı

TADL - An Architecture Description Language for Trustworthy
Component-Based Systems . 290

Mubarak Mohammad and Vasu Alagar

L-DSMS – A Local Data Stream Management System 298
Christian Hänsel, Hans Jürgen Ohlbach, and Edgar Stoffel

Towards Independent Software Architecture Review 306
Antony Tang, Fei-Ching Kuo, and Man F. Lau

Research Challenge Papers

On the Interplay of Aspects and Dynamic Reconfiguration in a
Specification-to-Deployment Environment . 314

Thais Batista, Antônio T.A. Gomes, Geoff Coulson,
Christina Chavez, and Alessandro Garcia

Extending the ANSI/SPARC Architecture Database with Explicit Data
Semantics: An Ontology-Based Approach . 318

Chimène Fankam, Stéphane Jean, Ladjel Bellatreche, and
Yamine Aı̈t-Ameur

Search-Based Extraction of Component-Based Architecture from
Object-Oriented Systems . 322

Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, and
Dalila Tamzalit

A Security Model for Internet-Based Digital Asset Management
Systems . 326

I. Chatzigiannakis, V. Liagkou, D. Salouros, and P. Spirakis

A Large Scope Transformational Approach for Distributed Architecture
Design . 330

Fabian Gilson, Vincent Englebert, and Raimundas Matulevičius

Towards a Software Process for Aspect-Oriented Modeling of Quality
Attributes . 334

Mónica Pinto and Lidia Fuentes

Domain Ontology-Based Generative Component Design Using Feature
Diagrams and Meta-programming Techniques . 338

Robertas Damaševičius, Vytautas Štuikys, and Jevgenijus Toldinas

Facets of Adaptivity . 342
Claudia Raibulet

XIV Table of Contents

Transition to Service-Oriented Enterprise Architecture 346
Martin Assmann and Gregor Engels

Diagrammatic Modeling of Architectural Decisions 350
Andrzej Zalewski and Marcin Ludzia

Web Services Domain Analysis Based on Quality Standards 354
F. Losavio, A. Matteo, and R. Rahamut

Visualizing Software Architectural Design Decisions 359
Larix Lee and Philippe Kruchten

Author Index . 363

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Issues in Architecture Evolution: Using Design Intent in
Maintenance and Controlling Dynamic Evolution

Dewayne E. Perry

The University of Texas at Austin, USA
perry@ece.utexas.edu

Abstract.  Issues in Architecture Evolution: 1) Using design intent in mainte-
nance & 2) Controlling dynamic evolution   In this keynote talk I will address
two issues in software architecture evolution. In Alex Wolf's and my original
architecture model, we proposed rationale as one of the major components.
Over the years very little has been explored about this issue. The primary pur-
pose of rationale was to record architecture design intent: why are things the
way they are? It is only recently that architecture researchers have become in-
terested in capturing design intent. Unfortunately the focus has been (as it was
in the 80's on capturing design decisions) on what can we capture and how. I
will focus instead on the problem of what design intent do we need when we
evolve the architecture design and discuss the work I am doing with my student
Paul Grisham. There are a number of interesting contexts where the dynamic
evolution of software architectures are of critical importance - for example,
self-managing, self-adapting systems, etc. Another interesting context is that of
simulating very large, very complex systems. In all these cases, the control of
dynamic architecture evolution is a critical issue. In the case of complex simu-
lations we have foreknowledge (indeed, control) of the desired architecture evo-
lution. I will focus on our approach in handling this issue in this context.
While this is a fairly narrow context, I believe our approach has applicability in
a wider context.

Keywords: Design intent, dynamic evolution, architectural maintenance.

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, p. 2, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Component-Oriented Verification of Software
Architectures through Built-in Tests

Colin Atkinson

University of Mannheim, Germany
atkinson@informatik.uni-mannheim.de

Abstract. Although the technologies used to implement and assemble compo-
nents have improved significantly in recent years, techniques for verifying sys-
tems created from them have changed very little. In fact, the correctness and
reliability of component-based systems are still usually checked using the tradi-
tional testing techniques employed before components and services became
widespread. These techniques are not only expensive because they treat a sys-
tem as a monolithic black box, they are not very helpful because they fail to use
architectural knowledge to pin-point the source of failures. As a result, many of
the potential benefits of component-based development are outweighed by the
costs involved in verifying the resulting systems. In this talk, Colin Atkinson
will present an approach that addresses this problem by making the system veri-
fication process component-oriented as well. Based on the notion of built-in
tests - tests that are packaged with components and are executed at run-time -
the approach reduces the level of manual effort needed to verify a system by
partially automating the testing process. It involves a method to define how ser-
vices/components should be written to support and exploit built-in tests, and a
resource-aware infrastructure that arranges for tests to be executed when they
have a minimal impact on the delivery of system services.

Keywords: Verification, built-in tests, system services.

Non-synchronous Communications in Process

Algebraic Architectural Description Languages

Marco Bernardo and Edoardo Bontà

Università di Urbino “Carlo Bo” – Italy
Istituto di Scienze e Tecnologie dell’Informazione

Abstract. Architectural description languages are a useful tool for mod-
eling complex software systems at a high level of abstraction and, if based
on formal methods, for enabling the early verification of various prop-
erties among which correct component coordination. This is the case
with process algebraic architectural description languages, as they have
been equipped with several techniques for verifying the absence of co-
ordination mismatches in the case of synchronous communications. The
objective of this paper is twofold. On the modeling side, we show how
to enhance the expressiveness of a typical process algebraic architec-
tural description language by including the capability of representing
non-synchronous communications, in such a way that the usability of
the original language is preserved. On the analysis side, we show how to
modify the compatibility check for acyclic topologies and the interoper-
ability check for cyclic topologies, in such a way that both checks can
still be applied in the presence of non-synchronous communications.

1 Introduction

Several architectural description languages have been proposed in the literature.
Many of them – like, e.g., Wright [2], Darwin/FSP [8], PADL [1], and π-ADL [10]
– are based on process algebra [9] due to its support to compositional modeling.
On the analysis side, process algebraic ADLs inherit all the techniques applicable
to process algebra, like model checking and equivalence checking. In addition,
such languages are equipped with ad-hoc analysis techniques (see, e.g., [2,7,4,1])
mostly based on behavioral equivalences. These techniques are useful for (i)
detecting coordination mismatches – deriving from components that are correct
if taken separately but that do not satisfy certain requirements when assembled
together – and (ii) generating diagnostic information – in order to pinpoint those
components from which mismatches arise.

The ad-hoc analysis techniques proposed in the literature deal only with syn-
chronous communications. In that setting, all ports of software components are
blocking. A component waiting on a synchronous input port cannot proceed
until an output is sent by another component. Similarly, a component issuing
an output via a synchronous output port cannot proceed until another compo-
nent is willing to receive. This is an important case, especially when verifying
coordination properties like the deadlock freedom of software systems resulting

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 3–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 M. Bernardo and E. Bontà

from the assembly of individually deadlock-free components. However, in general
software components can be involved not only in synchronous communications,
but also in non-synchronous communications.

The first contribution of this paper is to show how to enhance the expressive-
ness of a typical process algebraic architectural description language by including
the capability of representing non-synchronous communications, in such a way
that the usability of the original language is preserved. More specifically, we
focus on PADL [1] and we extend it by means of additional qualifiers useful to
distinguish among synchronous, semi-synchronous, and asynchronous ports.

Semi-synchronous ports are not blocking. A semi-synchronous port of a com-
ponent succeeds if there is another component ready to communicate with it,
otherwise it raises an exception so as not to block the component to which it be-
longs. For example, a semi-synchronous input port can be used to model accesses
to a tuple space via (non-blocking) input or read probes [6]. A semi-synchronous
output port can instead be used to model the (non-blocking) interplay between
a graphical user interface and an underlying application whenever the latter
cannot do certain tasks requested by the user.

Analogously, asynchronous ports are not blocking. Here the reason is that the
beginning and the end of the communications in which these ports are involved
are completely decoupled. For instance, an asynchronous output port can be
used to model output operations on a tuple space. An asynchronous input port
can instead be used to model the periodical check for the presence of information
received from an event notification service [5].

The semantic treatment of non-synchronous communications is completely
transparent to PADL users. They only have to specify appropriate synchronicity-
related qualifiers in their descriptions, hence the degree of usability of PADL
is unaffected. We will see that semi-synchronous ports can easily be handled
with suitable semantic rules generating exceptions whenever necessary, whereas
asynchronous ports require the addition of implicit repository-like components.

The second contribution of this paper is to show how to modify the com-
patibility check for acyclic topologies and the interoperability check for cyclic
topologies introduced in [1], in such a way that both checks can still be applied
in the presence of non-synchronous communications.

This paper is organized as follows. In Sect. 2 we recall PADL. In Sect. 3 we
extend its syntax with semi-synchronous and asynchronous ports and we conse-
quently revise its semantics. In Sect. 4 we modify the architectural compatibility
and interoperability checks in order to deal with non-synchronous communica-
tions as well. The modified checks are illustrated via an applet-based simulator
for a cruise control system. In Sect. 5 we provide some concluding remarks.

2 The Architectural Description Language PADL

PADL [1] is a process algebraic architectural description language. In this section
we present the syntax and the semantics for PADL after recalling some basic
notions of process algebra.

Non-synchronous Communications in Process Algebraic ADLs 5

2.1 Process Algebra

Process algebra [9] provides a set of operators by means of which the behavior
of a system can be described in an action-based, compositional way. Given a
set Name of action names including τ for invisible actions, we will consider a
process algebra PA with the following process term syntax:

P ::= 0 inactive process
| B process constant (B Δ= P)
| a.P action prefix (a ∈ Name)
| P + P alternative composition
| P ‖S P parallel composition (S ⊆ Name − {τ})
| P/H hiding (H ⊆ Name − {τ})
| P [ϕ] relabeling (ϕ : Name → Name, ϕ−1(τ) = {τ})

Operational semantic rules map every closed and guarded process term P
of PA to a state-transition graph [[P]] called labeled transition system, where
each state corresponds to a process term derivable from P , the initial state
corresponds to P , and each transition is labeled with the corresponding action.

Process terms are compared and manipulated by means of behavioral equiv-
alences. Among the various approaches, for PA we consider weak bisimilarity,
according to which two process terms are equivalent if they are able to mimic
each other’s visible behavior stepwise.

A symmetric relation R is a weak bisimulation if for all (P1, P2) ∈ R and

a ∈ Name − {τ}: (i) whenever P1

a
−−−→ P ′

1, then P2
τ∗aτ∗
===⇒ P ′

2 and (P ′
1, P

′
2) ∈ R;

(ii) whenever P1

τ
−−−→ P ′

1, then P2
τ∗

===⇒ P ′
2 and (P ′

1, P
′
2) ∈ R. Weak bisimilarity

≈B is the union of all the weak bisimulations.

2.2 PADL Textual and Graphical Notations

A PADL description represents an architectural type, which is a family of soft-
ware systems sharing certain constraints on the observable behavior of their
components as well as on their topology.

The textual description of an architectural type starts with the name and
the formal parameters (initialized with default values) of the architectural type.
The available data types are boolean, integer, real, list, array, record, and generic
object. The textual description then comprises two sections.

The first section defines the behavior of the system family by means of types of
software components and connectors, which are collectively called architectural
element types. The definition of an AET starts with its name and its formal
parameters and consists of the specification of its behavior and its interactions.

The behavior of an AET has to be provided in the form of a sequence of defin-
ing equations written in a verbose variant of PA allowing only for the inactive

6 M. Bernardo and E. Bontà

process (rendered as stop), the value-passing action prefix operator with a pos-
sible boolean guard condition, the alternative composition operator (rendered
as choice), and recursion.

The interactions are those actions occurring in the process algebraic specifica-
tion of the behavior that act as interfaces for the AET, while all the other actions
are assumed to represent internal activities. Each interaction has to be equipped
with two qualifiers. The first qualifier establishes whether the interaction is an
input or output interaction.

The second qualifier describes the multiplicity of the communications in which
the interaction can be involved. We distinguish among uni-interactions mainly
involved in one-to-one communications (qualifier UNI), and-interactions guiding
inclusive one-to-many communications (qualifier AND), or-interactions guiding
selective one-to-many communications (qualifier OR). It can also be established
that an output or-interaction depends on an input or-interaction, in order to
guarantee that a selective one-to-many output is sent to the same element from
which a selective many-to-one input was received (keyword DEP).

The second section of the PADL description defines the topology of the system
family. This is accomplished in three steps. First we have the declaration of the
instances of the AETs – called AEIs – which represent the actual system compo-
nents and connectors, together with their actual parameters. Then we have the
declaration of the architectural (as opposed to local) interactions, which are some
of the interactions of the AEIs that act as interfaces for the whole systems of the
family. Finally, we have the declaration of the architectural attachments among
the local interactions of the AEIs, which make the AEIs communicate with each
other. An attachment is admissible only if it goes from an output interaction
of an AEI to an input interaction of another AEI. Moreover, a uni-interaction
can be attached to only one interaction, whereas an and-/or-interaction can be
attached to (several) uni-interactions only.

ARCHI TYPE �name and initialized formal parameters�

ARCHI BEHAVIOR
...

...
ARCHI ELEM TYPE �AET name and formal parameters�

BEHAVIOR �sequence of PA defining equations built from
stop, action prefix, choice, and recursion�

INPUT INTERACTIONS �input uni/and/or-interactions�
OUTPUT INTERACTIONS �output uni/and/or-interactions�

...
...

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES �AEI names and actual parameters�
ARCHI INTERACTIONS �architecture-level AEI interactions�
ARCHI ATTACHMENTS �attachments between AEI local interactions�

END

Non-synchronous Communications in Process Algebraic ADLs 7

Besides the textual notation, PADL comes equipped with a graphical notation
that is an extension of the flow graph notation [9]. In an enriched flow graph,
AEIs are depicted as boxes, local (resp. architectural) interactions are depicted
as small black circles (resp. white squares) on the box border, and attachments
are depicted as directed edges between pairs each composed of a local output
interaction and a local input interaction. The small circle/square of an interac-
tion is extended with a triangle (resp. bisected triangle) outside the AEI box if
the interaction is an and-interaction (resp. or-interaction).

Example 1. Suppose we need to model a scenario in which there is a server that
can be contacted at any time by two identically behaving clients. Assume that
the server has no buffer for holding incoming requests and that, after sending
a request, a client cannot proceed until it receives a response from the server.
Since the behavior of the two clients is identical, a single client AET suffices:

ARCHI_ELEM_TYPE Client_Type(void)
BEHAVIOR
Client(void; void) =

process . send_request . receive_response . Client()
INPUT_INTERACTIONS UNI receive_response
OUTPUT_INTERACTIONS UNI send_request

where process is an internal action. The server AET can be defined as follows:

ARCHI_ELEM_TYPE Server_Type(void)
BEHAVIOR
Server(void; void) =

receive_request . compute_response . send_response . Server()
INPUT_INTERACTIONS OR receive_request
OUTPUT_INTERACTIONS OR send_response DEP receive_request

where compute response is an internal action, while send response is declared
to depend on receive request in order to make sure that each response is sent
back to the client that issued the corresponding request. Finally, we declare the
topology of the system as follows:

ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES
C_1 : Client_Type();
C_2 : Client_Type();
S : Server_Type()

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM C_1.send_request TO S.receive_request;
FROM C_2.send_request TO S.receive_request;
FROM S.send_response TO C_1.receive_response;
FROM S.send_response TO C_2.receive_response

8 M. Bernardo and E. Bontà

where the dot notation has to be used so as to avoid ambiguities in cases in
which the same action name denotes interactions belonging to different AEIs.

2.3 The Semantics for PADL

The semantics for PADL is given by translation into PA. The meaning of a
PADL description is a process term stemming from the parallel composition of
the process algebraic specifications of the behavior of the AEIs declared in the
description, with synchronization sets being determined by attachments.

Let C be an AET with formal parameters fp1, . . . , fpm and behavior given by
the sequence E of defining equations. Let C be an AEI of type C with actual
parameters ap1, . . . , apm. Then the semantics of C is defined as follows:

[[C]] = or-rewrite(E{ap1/fp1, . . . , apm/fpm})

where { / , . . . , / } denotes a syntactical substitution, while function or-rewrite
inductively rewrites the body of any defining equation of E by replacing each
occurrence of any or-interaction with fresh uni-interactions. More precisely, if
or-interaction a of C is involved in attach-no(C.a) = l ≥ 2 attachments, then:

or-rewrite(a.P) = choice{a1.or-rewrite(P),...
al.or-rewrite(P)}

Consider now a set {C1, . . . , Cn} of AEIs and let us denote by LICj the set of
local interactions of Cj and by LICj;C1,...,Cn ⊆ LICj the set of local interactions
of Cj attached to {C1, . . . , Cn}. In order to make such AEIs interact in the
framework of PA – where only actions with the same name can synchronize –
we need a set S(C1, . . . , Cn) of fresh action names, one for each pair of attached
local uni-interactions in {C1, . . . , Cn} and for each set of local uni-interactions
attached to the same local and-interaction in {C1, . . . , Cn}.

Then we need suitable injective relabeling functions ϕCj ;C1,...,Cn mapping each
LICj ;C1,...,Cn to S(C1, . . . , Cn) in such a way that:

ϕCj ;C1,...,Cn(a1) = ϕCg;C1,...,Cn(a2)

if and only if Cj .a1 and Cg.a2 are attached to each other or to the same and-
interaction. To ensure renaming uniqueness, S(C1, . . . , Cn) can be built by con-
catenating the original names of attached interactions – e.g., Cj .a1#Cg.a2.

The interacting semantics of Cj with respect to {C1, . . . , Cn} is defined as
follows:

[[Cj]]C1,...,Cn = [[Cj]][ϕCj ;C1,...,Cn]

In general, the interacting semantics of {C′
1, . . . , C

′
n′} ⊆ {C1, . . . , Cn} with re-

spect to {C1, . . . , Cn} is defined as follows:

[[C′
1, . . . , C

′
n′]]C1,...,Cn = [[C′

1]]C1,...,Cn ‖S(C′
1,C′

2;C1,...,Cn)

[[C′
2]]C1,...,Cn ‖S(C′

1,C′
3;C1,...,Cn)∪S(C′

2,C′
3;C1,...,Cn) . . .

. . . ‖n′−1∪
i=1

S(C′
i,C

′
n′ ;C1,...,Cn)

[[C′
n′]]C1,...,Cn

Non-synchronous Communications in Process Algebraic ADLs 9

where S(C′
j , C

′
g; C1, . . . , Cn) = S(C′

j ; C1, . . . , Cn)∩S(C′
g ; C1, . . . , Cn) is the pair-

wise synchronization set of C′
j and C′

g with respect to {C1, . . . , Cn}, with
S(C′

j ; C1, . . . , Cn) = ϕC′
j ;C1,...,Cn

(LIC′
j ;C1,...,Cn

) being the synchronization set
of C′

j with respect to {C1, . . . , Cn}. Finally, the semantics of an architectural
type A formed by the set of AEIs {C1, . . . , Cn} is defined as follows:

[[A]] = [[C1, . . . , Cn]]C1,...,Cn

Example 2. Consider the client-server system described in Ex. 1. Then [[C 1]] and
[[C 2]] coincide with the defining equation for Client, whereas [[S]] is given by the
following defining equation obtained from the one for Server after manipulating
the occurring or-interactions:

Server’(void; void) =
choice
{
receive_request_1 . compute_response . send_response_1 . Server’(),
receive_request_2 . compute_response . send_response_2 . Server’()

}

The semantics of the whole description is given by the following process term:

[[C 1]][send request
→ C 1.send request#S.receive request 1,
receive response
→ S.send response 1#C 1.receive response]

‖∅
[[C 2]][send request
→ C 2.send request#S.receive request 2,

receive response
→ S.send response 2#C 2.receive response]
‖{C 1.send request#S.receive request 1,

S.send response 1#C 1.receive response,

C 2.send request#S.receive request 2,

S.send response 2#C 2.receive response}
[[S]][receive request 1
→ C 1.send request#S.receive request 1,

send response 1
→ S.send response 1#C 1.receive response,
receive request 2
→ C 2.send request#S.receive request 2,
send response 2
→ S.send response 2#C 2.receive response]

3 Semi-synchronous and Asynchronous Interactions

All the interactions occurring in a PADL description can be involved only in
synchronous communications, thus causing input interactions and output in-
teractions to be blocking operations. In order to increase the expressiveness of
PADL, within the interface of each AET we will provide support for distinguish-
ing among synchronous, semi-synchronous and asynchronous interactions. The
usability of the language will be preserved by means of suitable synchronicity-
related qualifiers that are made available to PADL users.

In this section we enrich the textual and graphical notations in order to express
non-synchronous interactions, then we revise the semantics accordingly. The nine

10 M. Bernardo and E. Bontà

C1

C1

C1

C1

C1

C1

C1

C1

C1

C2

C2

C2

C2

C2

C2

C2

C2

C2

1C .o_/C .i_exception2

1C .o_/C .i_exception2

C .o_exception1

C .i_exception2

C .i_exception2

C .i_exception2

C .i_exception2

i
o

i
o

i
o

i
o

i
o

i
o

i
o

i
o

i
o

||{1P

||{1P

||{1P

||{1P

||{1P

||{1P

(||{1P

(||{1P

(||{1P
1C .o#AOQ.arrive} Queue)

1C .o#AOQ.arrive} Queue) ||{ 2

1C .o#AOQ.arrive} Queue) ||{ 2

1C .o#AIQ.arrive} (Queue ||

C .o#C .i1 2 } 2P

C .o#C .i1 2 } 2P

1C .o#AIQ.arrive} (Queue ||

C .o#C .i1 2 } 2P

C .o#C .i1 2 } 2P

||{ departAOQ. #AIQ.arrive}
(Queue ||)2P

{ depart 2AIQ. #C .i)2P}

{ depart 2AIQ. #C .i)2P}

{ departAIQ. #C .i2 }

departAOQ. #C .i

departAOQ. #C .i} 2P

} 2P

Fig. 1. Synchronous, semi-synchronous and asynchronous communications

resulting forms of communication are summarized by Fig. 1, with the first one
being the only one originally available in PADL.

3.1 Enriching PADL Textual and Graphical Notations

In the textual notation of PADL we introduce a third qualifier for interactions,
to be used in the definition of the AETs. Such a qualifier establishes whether
an interaction is synchronous, semi-synchronous, or asynchronous. The related
keywords are SYNC (default value), SSYNC, and ASYNC, respectively.

While a synchronous interaction blocks the AEI executing it as long as the in-
teractions attached to it are not ready, this is not the case with non-synchronous
interactions. More precisely, a semi-synchronous interaction raises an exception
if it cannot take place immediately due to the (temporary or permanent) un-
availability of the interactions attached to it, so that the AEI executing it can
proceed anyway. Likewise, in the case of an asynchronous interaction the begin-
ning and the end of the communication are decoupled, hence the AEI executing
the interaction will never block.

A boolean variable s.success is associated with each semi-synchronous in-
teraction s. This implicitly declared variable is made available to PADL users
in order to catch exceptions. In this way situations in which different behaviors
have to be undertaken depending on the outcome of s can easily be managed.

In the graphical notation a semi-synchronous interaction is depicted by ex-
tending the small circle/square of the interaction with an arc inside the AEI
box. An asynchronous interaction, instead, is depicted by extending the small
circle/square with a buffer inside the AEI box.

Non-synchronous Communications in Process Algebraic ADLs 11

Example 3. Consider again the client-server system described in Ex. 1. Since
the server has no buffer for incoming requests, each client may want to send a
request only if the server is not busy, so that the client can keep working instead
of passively waiting for the server to become available. This can be described by
transforming send request into a semi-synchronous interaction:

ARCHI_ELEM_TYPE Client_Type(void)
BEHAVIOR
Client(void; void) =

process . send_request .
choice
{

cond(send_request.success = true) ->
receive_response . Client(),

cond(send_request.success = false) ->
keep_processing . Client()

}
INPUT_INTERACTIONS SYNC UNI receive_response
OUTPUT_INTERACTIONS SSYNC UNI send_request

On the other hand, the server should not make any assumption about the status
of its clients, as these may be much more complicated than the description above.
In particular, when sending out a response to a client, the server should not be
blocked by the temporary or permanent unavailability of that client, as this
would decrease the quality of service. This can be achieved by using keyword
ASYNC in the declaration of interaction send response within Server Type.

3.2 Semantics of Semi-synchronous Interactions: Additional Rules

A semi-synchronous interaction s executed by an AEI C gives rise to a transition
labeled with s within [[C]]. However, in an interacting context this transition
has to be relabeled with s exception if s cannot immediately participate in a
communication. This is accomplished by means of additional semantic rules.

Suppose that the output interaction o of an AEI C1 is attached to the input
interaction i of an AEI C2. Let C1.o#C2.i be the fresh action name associated
with their synchronization, P1 (resp. P2) be the process term representing the
current state of [[C1]]C1,C2 (resp. [[C2]]C1,C2), and S = S(C1, C2; C1, C2).

If o is synchronous and i is semi-synchronous – which is the second form of
communication depicted in Fig. 1 – then the following additional semantic rule
is necessary for handling exceptions:

P1 �
C1.o#C2.i

−−−−−−−−−→ P2

C1.o#C2.i
−−−−−−−−−→ P ′

2

P1 ‖S P2

C2.i exception
−−−−−−−−−→ P1 ‖S P ′

2 C2.i.success = false

In the symmetric case in which o is semi-synchronous and i is synchronous –
which corresponds to the fourth form of communication depicted in Fig. 1 – the
following additional semantic rule is necessary for handling exceptions:

12 M. Bernardo and E. Bontà

P1

C1.o#C2.i
−−−−−−−−−→ P ′

1 P2 �
C1.o#C2.i

−−−−−−−−−→

P1 ‖S P2

C1.o exception
−−−−−−−−−→ P ′

1 ‖S P2 C1.o.success = false

Finally, in the case in which both o and i are semi-synchronous – which
corresponds to the fifth form of communication depicted in Fig. 1 – we have the
previous two semantic rules together.

3.3 Semantics of Asynchronous Interactions: Implicit AEIs

While semi-synchronous interactions are dealt with by means of suitable seman-
tic rules accounting for possible exceptions, asynchronous interactions need a
different treatment because of the decoupling between the beginning and the
end of the communications in which those interactions are involved.

After the or-rewriting process, for each asynchronous uni-/and-interaction we
have to introduce an additional implicit AEI that behaves as an unbounded
buffer, as shown in the third, sixth, seventh, eighth and ninth form of commu-
nication depicted in Fig. 1. This AEI is of the following type, where arrive is
an always-available synchronous interaction, whereas depart is a synchronous
interaction enabled only if the buffer is not empty.

ARCHI_ELEM_TYPE Async_Queue(void)
BEHAVIOR
Queue(int i := 0; void) =

choice
{
cond(true) -> arrive . Queue(i + 1),
cond(i > 0) -> depart . Queue(i - 1)

}
INPUT_INTERACTIONS SYNC --- arrive
OUTPUT_INTERACTIONS SYNC --- depart

In the case of an asynchronous output interaction o, this is implicitly converted
into a synchronous uni-interaction and attached to arrive, which is declared as a
uni-interaction. By contrast, depart, which is declared as a uni-/and-interaction
depending on whether o was a uni-/and-interaction, is attached to the input
interactions originally attached to o.

In the case of an asynchronous input interaction i, depart is declared as a
uni-interaction and implicitly attached to i, which is implicitly converted into a
semi-synchronous uni-interaction. By contrast, the output interactions originally
attached to i are attached to arrive, which is declared as a uni-/and-interaction
depending on whether i was a uni-/and-interaction.

Note that i becomes semi-synchronous because the communications between
depart and i must not block the AEI executing i whenever the buffer is empty.
Thus i is subject to the first additional semantic rule defined in Sect. 3.2.

Non-synchronous Communications in Process Algebraic ADLs 13

3.4 Revising PADL Semantics

Due to the way non-synchronous interactions have been handled, we only need
to revise the definition of the semantics of an AEI in isolation, while all the
subsequent definitions given in Sect. 2.3 are unchanged. More precisely, we only
have to take into account the possible presence of additional implicit AEIs acting
as unbounded buffers for asynchronous interactions.

Suppose that AEI C has h ∈ NI >0 asynchronous input interactions i1, . . . , ih –
handled through the related additional implicit AEIs AIQ1, . . . ,AIQh – and k ∈
NI >0 asynchronous output interactions o1, . . . , ok – handled through the related
additional implicit AEIs AOQ1, . . . ,AOQk. Then [[C]] is defined as follows:

((

h
︷ ︸︸ ︷

Queue‖∅ . . . ‖∅ Queue) [ϕC,async]) ‖{AIQ1.depart#C.i1,...,AIQh.depart#C.ih}
or-rewrite(E{ap1/fp1, . . . , apm/fpm}) [ϕC,async]

‖{C.o1#AOQ1.arrive,...,C.ok#AOQk.arrive}((Queue‖∅ . . . ‖∅ Queue
︸ ︷︷ ︸

k

) [ϕC,async])

where ϕC,async transforms C.i1, . . . , C.ih, C.o1, . . . , C.ok and the related attached
interactions of AIQ1, . . . ,AIQh,AOQ1, . . . ,AOQk into the corresponding fresh
names occurring in the two synchronization sets.

4 Modifying Architectural Checks

The objective of the architectural checks developed in [1] is to infer certain archi-
tectural properties – which thus involve only interactions – from the properties
of the individual AEIs through a topological reduction process based on equiv-
alence checking. In case of failure, such checks provide diagnostic information
useful to single out components responsible for possible property violations.

The starting point in [1] is given by abstract variants of enriched flow graphs,
where vertices correspond to AEIs and two vertices are linked by an edge if and
only if attachments have been declared among their interactions. These graphs
are arbitrary combinations of stars and cycles, which are thus viewed as basic
topological formats.

The strategy proposed in [1] is to reduce the whole topology of an architectural
type to a single equivalent AEI that satisfies the properties of interest. This is
accomplished by applying specific checks locally to stars and cycles occurring
in the abstract enriched flow graph of the architectural type. If passed, each
check allows the star/cycle in which it has been employed to be replaced by an
equivalent AEI in the star/cycle itself that satisfies the properties of interest.

In this section we show how to modify the compatibility check for stars and the
interoperability check for cycles, in such a way that both checks can still be ap-
plied in the presence of non-synchronous interactions. Although these checks are
conceived for an entire class of properties [1], for the sake of simplicity here the
considered property is deadlock freedom and the behavioral equivalence chosen
among those preserving deadlock freedom is weak bisimilarity ≈B (Sect. 2.1).

14 M. Bernardo and E. Bontà

4.1 Revising Closed Interacting Semantics

The considered architectural checks must be applied to closed variants of the
interacting semantics of AEIs, where all the internal actions are hidden. In the
framework of PADL enriched with non-synchronous interactions, also the asyn-
chronous interactions have to be hidden together with the interactions of the
related additional implicit AEIs to which they are re-attached. The reason is
that all of those interactions cannot communicate with the rest of the system,
hence they cannot affect architectural properties.

Let {C1, . . . , Cn} be a set of AEIs and let Cj be one of its AEIs having h ∈ NI >0

asynchronous input interactions i1, . . . , ih and k ∈ NI >0 asynchronous output
interactions o1, . . . , ok. The closed interacting semantics of Cj with respect to
{C1, . . . , Cn} is defined as follows:

[[Cj]]cC1,...,Cn
= [[Cj]]C1,...,Cn / (Name − LICj;C1,...,Cn)

/ {AIQ1.depart#Cj .i1, . . . ,AIQh.depart#Cj .ih,
Cj .o1#AOQ1.arrive, . . . , Cj .ok#AOQk.arrive ,
Cj .i1 exception , . . . , Cj .ih exception}

The closed interacting semantics [[C′
1, . . . , C

′
n′]]cC1,...,Cn

and the closed semantics
[[A]]c are defined accordingly.

4.2 Adapting Architectural Compatibility

A star is an acyclic portion of the abstract enriched flow graph of an architectural
type, which is formed by a central AEI K and a border BK = {C1, . . . , Cn}
including all the AEIs attached to K. In order to achieve a correct coordination
between K and each Cj ∈ BK , the actual observable behavior of each Cj should
coincide with the one expected by K. In other words, the observable behavior
of K should not be altered by the addition of Cj to the border of the star.

Definition 1. We say that K is compatible with Cj ∈ BK iff:

([[K]]cK,BK
‖S(K,Cj;K,BK) [[Cj]]cK,BK

) / Hj ≈B [[K]]cK,BK
/ Hj

where the hiding set Hj includes all the semi-synchronous interactions involved
in attachments between K and Cj together with the related exceptions, as well
as all the interactions of implicit AEIs associated with K (resp. Cj) that are
attached to interactions of Cj (resp. K).

Note that Hj = ∅ whenever neither K nor Cj has semi-synchronous or asyn-
chronous interactions. In fact, the presence of Hj is the novelty with respect to
the definition of compatibility given in [1].

The reason why it makes sense to hide those semi-synchronous and asyn-
chronous interactions is that they are not blocking, hence similarly to internal
actions they cannot negatively affect component coordination.

The reason why it is necessary to hide each of them is that, within an AEI
executing one of them the interaction takes place at a specific point with a

Non-synchronous Communications in Process Algebraic ADLs 15

specific outcome, while in the parallel composition of that AEI with other AEIs
the same interaction can have a different outcome (semi-synchronous case) or can
be delayed (asynchronous case). This may lead to detect inequivalence between
the behavior of the individual AEI and the behavior of a set of AEIs including it
– a compatibility violation – even in the absence of a real coordination mismatch.

We now extend the compatibility theorem of [1] to non-synchronous interac-
tions. The additional constraint to satisfy is that no and-interaction occurring in
the star can be non-synchronous or attached to a non-synchronous interaction.

Theorem 1. Let H = H1 ∪ . . . ∪ Hn. Whenever [[K]]cK,BK
/ H is deadlock free

and K is compatible with any Cj ∈ BK , then the whole star [[K, BK]]cK,BK
/ H is

deadlock free provided that Hj ∩ Hg = ∅ for all j �= g.

4.3 Adapting Architectural Interoperability

Consider a cycle {C1, . . . , Cn} in the abstract enriched flow graph of an archi-
tectural type A. As shown in [1], compatibility is not enough to deal with it.
The reason is that the AEIs in the cycle can no longer be considered two-by-two,
because each of them may interfere with any of the others. In order to achieve
a correct coordination between any Cj and the rest of the cycle, the actual ob-
servable behavior of Cj should coincide with the one expected by the rest of the
cycle. In other words, the observable behavior of the rest of the cycle should not
be altered by the addition of Cj to the cycle.

Definition 2. We say that Cj interoperates with the rest of the cycle iff:

[[C1, . . . , Cn]]cA / (Name − S(Cj ; A)) / Hj ≈B [[Cj]]cA / Hj

where Hj includes all the semi-synchronous interactions involved in attachments
between Cj and the rest of the cycle together with the related exceptions, as well
as all the interactions of implicit AEIs associated with Cj (resp. the rest of the
cycle) that are attached to interactions of the rest of the cycle (resp. Cj).

As in Sect. 4.2, the presence of Hj is the novelty with respect to the definition of
interoperability given in [1]. We now extend the interoperability theorem of [1]
to non-synchronous interactions.

Theorem 2. Whenever there exists Cj in the cycle such that [[Cj]]cA / Hj is dead-
lock free and Cj interoperates with the rest of the cycle, then the whole cycle
[[C1, . . . , Cn]]cA / (Name − S(Cj ; A)) / Hj is deadlock free.

4.4 Example: An Applet-Based Simulator

In this section we discuss the application of the modified architectural checks by
revisiting the cruise control system considered in [8,3].

16 M. Bernardo and E. Bontà

This system is governed by two pedals – accelerator and brake – and three
buttons – on, off, and resume. When on is pressed, the cruise control system
records the current speed and maintains the automobile at that speed. When
the accelerator, the brake, or off is pressed, the cruise control system disengages
but retains the speed setting. If resume is pressed later on, then the system is
able to accelerate or decelerate the automobile to the previously recorded speed.

The cruise control system is formed by four software components: a sensor, a
speed controller, a speed detector, and a speed actuator. The sensor detects the
driver commands and forwards them to the speed controller, which in turn trig-
gers the speed actuator. The speed detector periodically measures the number
of wheel revolutions per time unit. The speed actuator adjusts the throttle on
the basis of the triggers received from the controller and of the speed measured
by the detector.

As an example, we report the definition of the sensor AET:

ARCHI_ELEM_TYPE Sensor_Type(void)
BEHAVIOR
Sensor_Off(void; void) =

detected_engine_on . turn_engine_on . Sensor_On();
Sensor_On(void; void) =

choice
{
detected_accelerator . press_accelerator . Sensor_On(),
detected_brake . press_brake . Sensor_On(),
detected_on . press_on . Sensor_On(),
detected_off . press_off . Sensor_On(),
detected_resume . press_resume . Sensor_On(),
detected_engine_off . turn_engine_off . Sensor_Off()

}
INPUT_INTERACTIONS UNI detected_engine_on; detected_engine_off;

detected_accelerator; detected_brake;
detected_on; detected_off; detected_resume

OUTPUT_INTERACTIONS UNI press_accelerator; press_brake;
press_on; press_off; press_resume

AND turn_engine_on; turn_engine_off

Suppose we want to design an applet-based simulator for such a system. The
applet will have seven software buttons – corresponding to turning the engine
on/off, the two pedals, and the three hardware buttons – together with a text
area showing the sequence of buttons that have been pressed. When pressing
one of the seven software buttons, the corresponding operation either succeeds
or fails. In the first case, the applet can interact with the sensor and the text
area is updated accordingly. In the second case – think, e.g., of pressing the
accelerator button when the engine is off – the applet cannot interact with the
sensor, rather it emits a beep.

In order not to block the simulator in case of failure, we need to model several
operations of the applet through semi-synchronous interactions, as shown below:

Non-synchronous Communications in Process Algebraic ADLs 17

ARCHI_ELEM_TYPE Applet_Type(void)
BEHAVIOR
Unallocated(void; void) =

create_applet . start_applet . Active();
Active(void; void) =

choice
{
signal_engine_on . Checking(signal_engine_on.success),
signal_accelerator . Checking(signal_accelerator.success),
signal_brake . Checking(signal_brake.success),
signal_on . Checking(signal_on.success),
signal_off . Checking(signal_off.success),
signal_resume . Checking(signal_resume.success),
signal_engine_off . Checking(signal_engine_off.success),
stop_applet . Inactive()

};
Checking(boolean success; void) =

choice
{
cond(success = true) -> update . Active(),
cond(success = false) -> beep . Active(),

};
Inactive(void; void) =

choice
{
start_applet . Active(),
destroy_applet . Unallocated()

}
INPUT_INTERACTIONS SYNC UNI create_applet; destroy_applet;

start_applet; stop_applet
OUTPUT_INTERACTIONS SSYNC UNI signal_engine_on; signal_engine_off;

signal_accelerator; signal_brake;
signal_on; signal_off; signal_resume

As far as the instance of Applet Type is concerned, its four input interactions
are related to user commands for starting/stopping the simulator. By contrast,
its seven signal output interactions are related to user commands for the cruise
control system, hence they are attached to the corresponding detected input
interactions of the instance of Sensor Type.

Suppose we wish to verify whether the applet-based simulator is deadlock
free. From the topological viewpoint, the system is a cycle formed by four AEIs
(sensor, controller, actuator, detector) with an additional AEI (applet) attached
to one of them (sensor). Within the cycle there are no non-synchronous interac-
tions, hence applying the modified interoperability check to the cycle boils down
to applying the original check. The outcome is thus known from [3]: the cycle
is deadlock free, because it is weakly bisimilar to the sensor and the sensor is
deadlock free (Thm. 2).

Now the sensor and the applet constitute a degenerate star, for which the origi-
nal compatibility check is not appropriate due to the presence of semi-synchronous

18 M. Bernardo and E. Bontà

interactions within the applet. By applying the modified architectural compatibil-
ity check, we see that the parallel composition of the closed interacting semantics
of the applet and of the sensor is weakly bisimilar to the closed interacting seman-
tics of the applet, where all the semi-synchronous interactions and the related ex-
ceptions have been hidden. Since the applet is deadlock free, we can conclude that
the applet-based simulator is deadlock free (Thm. 1).

5 Conclusion

In this paper we have extended process algebraic ADLs by including semi-
synchronous interactions – handled by means of suitable semantic rules – and
asynchronous interactions – managed by adding implicit buffer-like components.
Besides enhancing the expressiveness of a typical process algebraic ADL without
compromising its usability, we have shown that architectural checks for acyclic
and cyclic topologies – compatibility and interoperability – can be easily adapted
to cope with the presence of non-synchronous interactions.

In the case of asynchronous interactions, the semantic model underlying a pro-
cess algebraic architectural description may have infinitely many states because
the additional implicit components behave like unbounded buffers. In order for
the modified architectural checks to be effectively applicable in this case, one
option is to allow users to limit the size of buffers statically. Another option is
to derive sufficient conditions under which the state space is guaranteed to be
finite. This will be the subject of future work.

References

1. Aldini, A., Bernardo, M.: On the Usability of Process Algebra: An Architectural
View. Theoretical Computer Science 335, 281–329 (2005)

2. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans.
on Software Engineering and Methodology 6, 213–249 (1997)

3. Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting Families of Software Sys-
tems with Process Algebras. ACM Trans. on Software Engineering and Methodol-
ogy 11, 386–426 (2002)

4. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and Inheritance in Software
Architectures. Science of Computer Programming 41, 105–138 (2001)

5. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and Evaluation of a Wide-Area
Event Notification Service. ACM Trans. on Computer Systems 19, 332–383 (2001)

6. Gelernter, D.: Generative Communication in Linda. ACM Trans. on Programming
Languages and Systems 7, 80–112 (1985)

7. Inverardi, P., Wolf, A.L., Yankelevich, D.: Static Checking of System Behaviors
Using Derived Component Assumptions. ACM Trans. on Software Engineering
and Methodology 9, 239–272 (2000)

8. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. Wiley, Chich-
ester (1999)

9. Milner,R.:Communication andConcurrency.Prentice-Hall, EnglewoodCliffs (1989)
10. Oquendo, F.: π-ADL: An Architecture Description Language Based on the Higher-

Order Typed π-Calculus for Specifying Dynamic and Mobile Software Architec-
tures. ACM Software Engineering Notes 29(3), 1–14 (2004)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 19–34, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Stakeholder Perception of Enterprise Architecture

Bas van der Raadt1, Sander Schouten1, and Hans van Vliet2

1 Capgemini, Global Financial Services / Architecture & Governance Improvement,
Papendorpseweg 100, 3528 BJ Utrecht, the Netherlands

{bas.vander.raadt,sander.schouten}@capgemini.com
2 VU University, Department of Computer Science

De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands
hans@cs.vu.nl

Abstract. Enterprise Architecture (EA) is increasingly being used by large or-
ganizations to get a grip on the complexity and inflexibility of their business
processes, information systems and technical infrastructure. Although seen as
an important instrument to help solve major organizational problems, effec-
tively applying EA seems no easy task. Efficient collaboration between archi-
tects and EA stakeholders is one of the main critical success factors for EA. The
basis for efficient collaboration between architects and EA stakeholders is mu-
tual understanding. In EA research, there has been much focus on the role of the
architect; there is little research on the EA stakeholder. In this article we present
the cognitive structure of four EA stakeholder groups, revealing how they
expect the EA function to help them achieve their goals. With this we gain un-
derstanding of the EA stakeholder and provide the basis for better collaboration
between architects and EA stakeholders.

Keywords: Enterprise Architecture, Organizational Function, Stakeholder Per-
ception, Efficiency, Effectiveness.

1 Introduction

Each organization tries to be unique in order to distinguish itself from its competitors.
However, many large organizations are not unique when it comes to the complexity
they face regarding their business and IT structures, processes, systems and procedures.
Organizations have different causes of this complexity – e.g., mergers & acquisitions
[1], low maturity of the IT function [2], or high diversity between operating models of
various business divisions [3] – but as a result typically face similar problems. For ex-
ample, due to the complexity of the operational environment, maintenance becomes a
managerial problem [4], which results in stability and continuity problems.

Large organizations use similar instruments to tackle these problems, one of which
is Enterprise Architecture (EA). EA provides a means to get a holistic view of the
organization’s current state, a clear description of the target situation, and a road map
to an integrated, well structured organization [5]. Hence, it acts as a means of abstract-
ing current state complexity, making decisions about the future state of the
organization, and provides a means of communicating those decisions taken [6], [7].

20 B. van der Raadt, S. Schouten, and H. van Vliet

EA offers a model driven management approach to set the boundaries at enterprise and
domain level for engineers, designers and software architects. EA ensures the delivery
of solution designs which integrate well into the existing operational environment of
the organization and contribute to achieving the organization’s strategy [5]. EA pro-
vides a mechanism for the overall planning and structuring of organizations – by pro-
viding standardization, and setting a clear direction for the future to guide changes –
covering the aspect areas: (1) business, (2) information, (3) information systems, and
(4) technical infrastructure [8], whereas Software Architecture (SA) aims at creating
one system or component within the information systems aspect area [5].

Although EA is an instrument for reducing organizational complexity, effectively
applying EA is not without problems in many organizations [7]. For example, many
EA delivery functions suffer from the ivory tower syndrome [9], delivering EA mod-
els that are too abstract and complex to be used in practice. This shows that the EA
delivery function is often not well integrated into the organization. Collaboration
between architects and EA stakeholders is often problematic.

In our view, the EA function reaches beyond EA delivery and also includes the
stakeholders involved with EA decision making and EA conformance [5]. In order for
the EA function to be effective, architects and EA stakeholders should effectively
work together through formal (governance) processes, but more importantly informal
(collaboration) processes [10]. The foundation for effective collaboration between
architects and EA stakeholders is understanding of each other’s perspectives in EA
decision making [10]. EA stakeholders make decisions based on the objectives spe-
cific to their roles [11]. The willingness of EA stakeholders to participate in the EA
function depends on their satisfaction with its performance, which is determined by
the degree in which they perceive their expectations about the EA function to be met
[12]. EA stakeholders expect the consequences of the EA function’s products and
services [5] to help them achieve their goals [13]. In order to effectively work to-
gether with EA stakeholders, architects should have a good understanding of those
goals. Current EA literature provides limited insight into the expectations of EA
stakeholders regarding the products and services the EA function provides, and how it
helps them achieve their objectives.

In this article, we provide insight in the mindset of EA stakeholders, showing their
expectations regarding the EA function’s products and services, and goal-
achievement. In order to build the EA stakeholders mind map, we used techniques
taken from consumer research [13] to get an understanding of the way in which EA
stakeholders see the EA function. This mind map allows architects to better under-
stand the EA stakeholder’s perspective and subsequently improve the collaboration
with them. Additionally, architects may improve their quality of EA products and
services based on the expectations of the EA stakeholders. This is no easy task, since
we found that stakeholder objectives are potentially conflicting, and expectations
regarding the EA function are extensive and hard to satisfy completely.

The article is structured as follows. In Section 2 we provide a brief description of
the EA function (2.1), and give an overview of the EA stakeholder groups (2.2). Sec-
tion 3 explains the two core elements of the theoretical framework of this study,
namely stakeholder satisfaction (3.1) and cognitive structure (3.2), and introduces the
interview and analysis techniques we used in creating the cognitive map of EA stake-
holders (3.3). Section 4 describes the context and characteristics of the company we

 Stakeholder Perception of Enterprise Architecture 21

conducted this study in. In sections 5 and 6 we provide the approach and results of the
data gathering and analysis. In Section 7 we discuss related work on EA stakeholders,
and discuss the limitations of our research. In Section 8 we draw final conclusions,
and provide recommendations for future research.

2 Stakeholders of the EA Function

2.1 EA Function

We define the EA function as: The organizational functions, roles and bodies in-
volved with creating, maintaining, ratifying, enforcing, and observing Enterprise
Architecture decision-making – established in the enterprise architecture and EA
policy – interacting through formal (governance) and informal (collaboration) proc-
esses at enterprise, domain, project, and operational levels [5]. Based on their roles
architects and other EA stakeholders focus on one or more aspect areas, such as busi-
ness, information, information systems, or technical infrastructure [8].

The EA function consists of three core activities: (1) EA decision making, (2) EA
delivery, and (3) EA conformance [5]. EA decision making involves approving new
EA products or changes in existing EA products, and handling escalations and waiv-
ers regarding EA conformance. EA products (i.e., architectures and EA policies) de-
scribe the EA decisions taken, and provide a means for communicating and enforcing
these decisions throughout the organization. EA delivery is responsible for creating
and maintaining these products, and provides advice to guide EA decision making.
EA delivery also validates projects and operational changes to see whether they
conform to the EA, and provides support in applying EA products. Finally, EA con-
formance is responsible for implementing organizational changes through solutions
described in the target architectures, complying with the EA policies, and provides
feedback on the applicability of the EA products [5].

2.2 EA Stakeholders

EA stakeholders are individual or grouped representatives of the organization who are
affected by EA products [14], either by providing input to EA decision making or
having to conform to the EA products. Typical EA stakeholders are senior manage-
ment, program and project managers, software architects, and enterprise architects.
Based on their specific role within the EA function, the organizational level at which
they operate, and the aspect area they focus on, EA stakeholders actively pursue spe-
cific objectives. These objectives are potentially conflicting [5], and may not help to
meet the organizational objectives [10]. However, regarding the attributes of the
products and the services of the EA function, each stakeholder expects these to help
achieve their goals [13].

We used the key SA stakeholder roles described by Smolander et al. [15] as a basis
to create a 4 by 4 matrix of EA stakeholders shown in Table 1. The columns represent
the four EA aspect areas [8] and the rows represent the four organizational levels [5].
We omitted the architect role in Table 1, since we focus on the other EA stakeholders
in this article. Architect roles exist at the various organizational levels, and have one
or more aspect areas of responsibility – e.g., enterprise business architect or project
application architect.

22 B. van der Raadt, S. Schouten, and H. van Vliet

At enterprise level, general management is responsible for EA decision making re-
garding the target enterprise architecture. This involves creating a strategy for the
aspect area these stakeholders are responsible for. The board, responsible for the en-
terprise business strategy, typically consists of the Chief Executive Officer (CEO),
Chief Financial Officer (CFO) and the Chief Operational Officer (COO). The Chief
Information Officer (CIO) is responsible for business and IT alignment [20], i.e. that
IT supply meets business information demand. Therefore, the CIO is concerned with
both information and IS aspect areas. The Chief Technology Officer (CTO) is respon-
sible for decision making regarding technology components and platforms.

Table 1. Key EA Stakeholders, their aspect areas and organizational levels

 Business Information Information Systems
(IS)

Technical
Infrastructure (TI)

Enterprise • CEO, CFO, COO

• CIO

• CIO

• CTO

Domain • Head of BD/BU
• Business change

manager

• DIO
• IT change

manager

• DIO
• IT change man-

ager

• Platform
manager

• Platform sub-
ject matter ex-
pert

Project • Business project
manager

• Business process
designer

• Information
analyst

• Software
development pro-
ject manager

• Software de-
signer/architect

• Infrastructure
project manager

• Infrastructure
engineer

Operational • Operational
business man-
ager

• Business process
engineer

• Data
administra-
tor

• Application
management

• Application
administrator

• Data center
management

• Infrastructure
administrator

Domain level EA stakeholders are typically domain owners and change managers
that coordinate (i.e., portfolio manager) or manage (i.e., program managers) change
programs within that domain. Within the business aspect area, a domain owner is the
head of a Business Division (BD) or Business Units (BU), who is responsible for the
operational performance of his/her domain. Like the CIO, the Division Information
Officer (DIO) [10] is responsible for the business and IT alignment for a specific
business domain, and therefore focuses on both information and information systems
aspect areas. Within the TI aspect area, the platform manager is responsible for the
operational performance of the platform or infrastructure domain. The platform sub-
ject matter expert guides all changes on that platform or domain.

At project level, EA stakeholders are responsible for running projects and imple-
menting high impact changes into the operational environment [5]. For example, the
business project manager is responsible for delivering, within fixed time and budget, a
solution that fits the business requirements. The business process designer is respon-
sible for determining the requirements and design of the solution. An information
analyst determines the information requirements and creates a database design
accordingly. The project managers in the IS and TI aspect areas manage the projects
that develop the software applications and infrastructure components. The software

 Stakeholder Perception of Enterprise Architecture 23

designer creates a design that realizes the functional and non-functional requirements.
The infrastructure engineer configures infrastructure components based on the infra-
structural requirements of the software application.

EA stakeholders at operational level are responsible for the stability and continuity
of the operational environment. The operational (business, application or data center)
manager is responsible for day-to-day operation and reporting. Business process engi-
neers and data, application, and infrastructure administrators perform day-to-day
maintenance and improvement activities to optimize continuity and stability.

3 Theoretical Framework

3.1 Stakeholder Satisfaction

Customer satisfaction is defined as the degree in which the customer perceives the
expectations regarding a specific product or service to be met [12]. In customer ser-
vice literature there has been a lot of effort in investigating the concept of customer
satisfaction, where the customer is seen as the main strategic stakeholder. For exam-
ple, Voss et al. used theory and approaches from the customer service literature to
measure the perceived service quality in higher education [16]. The concept of cus-
tomer satisfaction has, to our knowledge, not yet been applied in EA literature.

3.2 Cognitive Structures

Cognitive structures reflect the sense-making structures of individuals [17]. In cus-
tomer service literature, cognitive maps are used to study stakeholder expectations
and to evaluate their satisfaction [16]. Personal cognitive structures typically show the
sequence of conscious and unconscious acts directed toward goal achievement [13].
They contain hierarchically related sets of elements across levels of abstraction; high-
visible, short-term goals and low-visible, long-term goals [18]. For example, the cog-
nitive map of a student may reveal that the high-visible, short-term act of drinking
coffee helps in achieving the low visibility, long term goal of obtaining a master de-
gree; drinking coffee allows the student to stay awake, study longer, and get better
grades [13]. Stakeholder groups typically differ in the goals they pursue, and therefore
have different dominant logics and cognitive schemas [19]. Therefore, we expect that
different EA stakeholder groups evaluate the EA function service delivery differently.

3.3 Means-End Chain Analysis and Laddering Technique

A well-known type of cognitive structure is the means-end chain. A means-end chain
shows how a stakeholder associates, in its mind, consuming or using a product or
service (the means) with achieving a valued state (the ends) [13]. The elements in a
means-end chain know three levels: attributes (characteristics of a product or service),
consequences (results directly related to the delivery of a product or service), and
values (higher level ends the stakeholder wants to achieve) [16]. For example, “color”
is an attribute of the product “car”; having a red car may help to get a car look more
sportier. The objective with our study is to determine how EA stakeholders associate

24 B. van der Raadt, S. Schouten, and H. van Vliet

their ability to attain their goals and values (ends) with the qualities and attributes of
the EA function during their participation in the EA function.

The laddering technique provides an approach for building means-end chains.
There are two types of laddering techniques: (1) soft-laddering and (2) hard-laddering
[16]. Soft-laddering involves in-depth interviews with respondents following, as far as
possible, their natural flow of speech; the researcher seeks to understand the meaning
of the given answers and to link them to the means–end model. Hard-laddering uses
more standardized interview and questionnaire techniques. Because of the exploratory
nature of our research we applied the soft-laddering technique. We wanted to leave
room for the respondents to introduce their own attributes, and use further questioning
to gain more understanding about those attributes, and how they connected these to
consequences and values. The approach involves using semi-structured, qualitative,
in-depth interviews during which the interviewer asks questions to reveal attribute–
consequence–value chains by asking repeatedly questions why an attribute, conse-
quence or value is important to the respondent. The interviewer takes the subject up a
ladder of abstraction and follows a process of digging deeper by asking inquiring
questions. The answer to a question is a starting point for further questioning [16].

Table 2 shows an example ladder were an EA stakeholder (i.e., change manager)
mentions the attribute of the EA delivery function ‘collaboration between architects’.
He perceives high ‘EA product quality’ to be an outcome of proper ‘collaboration
between architects’, which helps achieving the value ‘monitoring’ of changes.

Table 2. Attribute-consequence-value ladder of a change manager

Respondent: “It’s important that domain architects reach consensus about the to-be situation.”
Code: ‘Collaboration between architects’ (Attribute)

Interviewer: “Why do you consider that as important?”
Respondent: “Currently, they fail to reach consensus, which results in non-cohesive architectures.”
Code: ‘EA product quality’ (Consequence)

Interviewer: “Why is that important to you?”
Respondent: “…insight in the to-be situation allows me to better monitor the ongoing changes.”
Code: To-be insight (Consequence)
Code: ‘Monitoring’ of changes (Value)

4 Case Description

We conducted this study within a medium to large company. We do not mention the
name of the company, but refer to it as company A, and have changed some charac-
teristics of the company to keep the case description anonymous.

4.1 Organizational Context

Company A has four specific Business Units (BU), five generic domains, and one
change organization (see Table 3). The BUs focus on different product lines or prod-
uct-market combinations and make up the operational business units of the division.
The five generic domains provide generic supporting services to the BUs.

The change organization guides and executes change activities in both BUs and
generic domains. One generic change department is responsible for the changes

 Stakeholder Perception of Enterprise Architecture 25

within the generic supporting services domains. The four BU change departments
each serve a specific BU as their ‘customer’, and have little interaction with stake-
holders external to their own company. The Application Management (AM) depart-
ment performs operational maintenance of all applications for BUs as well as generic
domains. The staff department of the change organization contains the architecture
department, and other staff departments. Company A uses an external Technical In-
frastructure (TI) service provider to host its information systems and therefore has no
in-house infrastructure engineering department, responsible for operational mainte-
nance and change activities regarding the technical infrastructure.

Table 3. Organizational structure of company A

Business Units (BU) Generic Domains Change Organization
• Product Line 1 • Finance & Control • BU Change Departments
• Product Line 2 • Marketing & Sales • Generic Change Depart-

ment
• Product Line 3 • Customer Relationship

Management
• Application Management

• Product Line 4 • Delivery Channels • Staff (Architecture, etc.)
 • Corporate & Performance

Management

4.2 EA Function

The EA function is primarily positioned within the change organization and consists
of: (1) the EA interest group, (2) the architecture department, and (3) various roles
within the change and application management departments.

The EA interest group consists of representatives of the change departments of
each BU and generic domain, and of the application management department, with
the mandate of the domain change managers to take decisions. Also, the manager of
the architecture department resides in the EA interest group, which is chaired by a
specific BU change manager. The responsibility of the interest group is to prepare EA
decision making before it is introduced in the change organization management team
(MT) meeting for final approval. Additionally, the EA interest group acts as a com-
munication platform to “sell” enterprise level EA decisions to the specific BUs and
generic domains.

The architecture department consists of three teams: (1) business and process ar-
chitecture, (2) technical application and service architecture, and (3) technical infra-
structure architecture. The department is responsible for supporting enterprise and
domain level EA decision making, as well as creating target architectures and EA
policies. Additionally, the architects are to provide support to the various stakeholders
in the change departments and AM department in applying the EA products. Finally,
the architects must ensure that the changes implemented as a result of the projects and
application maintenance activities conform to the EA products.

The various roles within the change and AM departments are: the domain change
manager, program manager, application manager, and project leader. Each role has
specific responsibilities depending on their position in the organization (see Table 1).

26 B. van der Raadt, S. Schouten, and H. van Vliet

The change managers are responsible for domain level EA decision making and
coordination of all changes (implemented by programs and projects) within a specific
BU or generic domain. Also, the domain change managers take part in the change
organization MT meeting and are therefore also involved in enterprise level EA deci-
sion making where they represent the domain specific concerns. Outcome of enter-
prise level EA decision making is the enterprise target architecture, which is input for
the yearly long-term planning cycle. Based on this long-term enterprise plan, each
domain has to create their domain change implementation plan.

The program managers are responsible for running a change program within the
constraints of the long-term plan. Running a program involves coordinating a set of
change projects that share a common goal and business case. A program typically
stays within a BU or generic domain, but it may have cross domain impact.

At project level, project leaders are responsible for implementing a solution within
time and budget constraints of the program plan. Application managers coordinate the
operational changes in the information systems implemented to ensure their stability
and continuity.

5 Data Gathering

We created a list of topics to be addressed in the interviews. We first carried out 12
interviews with Capgemini architects to gain understanding of the world of an enter-
prise architect, and identify the types of stakeholders enterprise architects work with
in practice. Next, we conducted preliminary interviews with 6 Capgemini consultants
(2 project managers, 2 program managers, a business and an information analyst)
experienced in cooperating with enterprise architects at client organizations. This
allowed us to gain an understanding of how those stakeholders perceived their par-
ticipation in the EA function. We used information thus gained to create a semi-
structured interview form for EA stakeholders. The main objective of the interviews
was to ask the respondents: What do you consider important regarding the service
delivery of the EA function? And why is that important to you?

In total, we interviewed 21 stakeholders of the EA function at the national insurer
(see Section 4): 4 change managers, 4 program managers, 3 project leaders, 5 applica-
tion managers, 1 information analyst, 2 employees of the sourcing department, and 2
infrastructure architects of the external TI service provider. Interviewing these stake-
holders was part of an integral assessment of the EA function. We also interviewed 8
architects and the EA delivery manager of the insurer to determine the maturity of the
EA delivery function using our NAOMI approach [7]. We used the data from these
interviews as background information in our study regarding the stakeholder’s per-
ception of the performance of the EA function.

Two interviewers, trained in applying the soft-laddering technique, conducted the
interviews and took personal notes. The same scribe was present at all interviews to
transcribe, as well as to double check whether the essential topics of the interview
form were addressed. Afterwards, the interviewer checked the interview transcript
with his personal notes and made necessary adjustments. A summary of the transcript
was sent to the interviewees so they could check whether the highlights came across
correctly. After having received feedback from the respondent, we completed the
interview transcripts by making final adjustments.

 Stakeholder Perception of Enterprise Architecture 27

6 Analysis

6.1 Attributes, Consequences and Values

We omitted five stakeholders in our analysis. Two of them, infrastructure architects of
the external TI service provider, were external stakeholders with an architect role. We
left them out because in this study we focus on non-architect roles. We omitted the
information analyst role from our analysis, since we only had access to one such per-
son. This was insufficient to get a complete enough perspective for that role. We also
left out the two employees of the sourcing department, because they both indicated to
have no role in the EA function. We used the interview transcripts of the remaining
16 respondents in our analysis.

Table 4. Attributes of the EA function as perceived by EA stakeholders

Attribute Definition
Clear roles (13) The demarcation and awareness of all roles within the EA function at

the different hierarchical and functional levels within the organization.
Governance structure (12) The responsibilities within the EA function assigned to formal

(individual) roles and bodies (e.g., councils and management teams)
regarding EA decision making and EA conformance.

Communication (11) The individual skills and behavior of architects that makes communi-
cation with various stakeholders effective. Along with the content of
architectural communication regarding architectural issues is be useful
makes sense to stakeholders.

Proactive behavior (11) Architects who act decisively and help stakeholders with applying EA
products (architectures and policies).

Vision (10) The architect having a long-term overarching view and a realistic
opinion about the organization and the realization of its business and
IT strategy.

Tenaciousness (10) The architect being persistent and powerful regarding the architecture
vision and principles, leading stakeholders to the planned direction.

Collaboration between
architects (8)

A good cooperation within the architecture team/department in order
to define clear directions for stakeholders. This includes discussing
and sharing important knowledge.

Functional knowledge (7) The architect’s knowledge and insights in software pack-
ages/components and the functionality, and thus the way these
packages/components and functionality can be used within the
organization to support its business.

Think along (7) The ability and willingness of the architect to think along with
stakeholders and understand their goals and their problems in order to
provide the best solution proposals.

Market trends (6) The architects’ knowledge and awareness of the current state of the art
technology and innovations within the market regarding packages,
tools and solutions.

Technological knowledge (6) A broad and detailed knowledge about the technologies used within
the organization and about the planned technological solutions that
will be used in the future.

Governance processes (5) The formal processes of decision making and the handling of
architectural deviations and exceptions within the EA function.

Accountability (4) Architects being responsible for their advises and the outcome of
his/her work.

Communication structure (4) The way in which communication within the EA function is
formalized (e.g., reporting lines, intranet pages, etc.).

28 B. van der Raadt, S. Schouten, and H. van Vliet

We analyzed the interview transcripts by labeling new categories and marking the
quotes that indicated the recurrence of existing categories. This resulted in a set of
labeled categories and accompanying quotes. We restructured and rephrased some
categories to sharpen their definitions and to achieve one level of abstraction. We
grouped the categories in attributes (desired characteristics of the EA function service
delivery), consequences (pleasant results directly related to the EA function service
delivery), and values (higher level ends the EA stakeholders want to achieve). Also,
for each category we determined how many members mentioned that category in the
interviews, which shows how important an attribute is perceived by stakeholders.

The four most important attributes show that stakeholders expect from the EA
function to have ‘clear roles’ defined, and a clear ‘governance structure’ which de-
fines the responsibilities corresponding to those roles. Regarding the architects, stake-
holders expect them to have proper ‘communication’ skills and content, as well as
‘proactive behavior’ in providing support in applying EA products.

Table 4 lists all attributes of the service provided by the architects or the EA func-
tion deemed important by respondents. For each attribute, it shows the label, number
of respondents who mentioned that topic in their interview, and our definition of the
attribute. Some attributes are closely related – e.g., ‘governance structure’ and ‘gov-
ernance processes’, as well as ‘thinking along’ and ‘proactive behavior’. The three
themes ‘technological knowledge’, ‘functional knowledge’ and ‘market trends’ indi-
cate the expectations regarding the knowledge of architects.

Stakeholders perceive attributes as important, because they result in positive con-
sequences (see Table 5). The importance of the consequences is more evenly distrib-
uted than the attributes. Every respondent mentioned ‘EA conformance’, either for
architectures (designs) or for EA policies, as an important consequence. We found
that the EA function is expected to deliver insight in 3 important aspects: current state
(‘as-is insight’), target state (‘to-be insight’), and ‘concrete EA plans’ (the translation
of strategic plans to concrete solutions outlines). Architects are also expected to

Table 5. Consequences of the EA function attributes as perceived by EA stakeholders

Consequence Definition
EA conformance (16) Assure that everyone works according the current architecture rules,

standards and guidelines. And assure that change initiatives and plans are
checked on their compliance with the to-be architecture.

Decision making (14) A fast, effective and well supported decision making process either to
define a to-be situation or to tackle implementation issues.

To-be insight (14) Having insight and a holistic perspective of the long and mid-term, future
situation.

As-is insight (13) Knowledge of the current environment, its activities, the IT systems,
infrastructure, business units and the coherence among them.

Close cooperation (13) A frequent and close cooperation between architects and stakeholders
based on a good business relation and aimed at constructively resolving
problems.

Concrete EA plans (12) The translation of strategic plans into specific implications and solution
outlines to support definition and start-up of projects.

EA product quality (12) A high quality design (to-be or as-is) or policy regarding the organiza-
tion’s business and IT assets. Quality attributes are: consistency, coher-
ence, readability, comprehensibility and relevance.

Acceptance of changes (7) A positive attitude towards the chosen to-be architecture among organiza-
tional members.

 Stakeholder Perception of Enterprise Architecture 29

support ‘decision making’, and to formalize the EA decisions in documents with a
high EA product quality’. Actively working towards the ‘acceptance of changes’
triggered by architecture is mentioned least. In order to achieve the other conse-
quences, stakeholders realize ‘close cooperation’ with architects is required.

Stakeholders expect the consequences (lower level goals), shown in Table 5, to
help achieve four distinct values (highest level goals), shown in Table 6. The ‘realiza-
tion of strategy’ is seen as an important goal of creating and implementing the to-be
architecture. Also, achieving ‘horizontal alignment’ between generic domains and
specific BUs through standardization of change implementation is a key value that
stakeholders aim to achieve with EA. Furthermore, stakeholders expect to use EA as
an instrument for ‘monitoring of changes’ implemented by programs and projects,
and to ensure ‘operational continuity’.

Table 6. Values of the EA stakeholders

Value Definition
Realization of strategy (12) Achieving a situation which is as closely possible to the planned to-be

architecture and the company’s strategy.
Horizontal Alignment (12) Coherent and consistent (standardized) implementation of changes

among the different generic domains and specific BUs.
Monitoring of changes
(10)

The overview of the current activities (projects and programs) within an
organization to supervise change/project status and how these activities
can result in a particular future state.

Operational continuity (6) The assurance of the quality (e.g. continuity, stability) and effectiveness
of the current core- and supportive operations, both business and IT.

6.2 Hierarchical Value Map

We analyzed how the interviewees related categories to each other by building attribute-
consequence-value ladders (e.g., see Table 2). We used a software tool to analyze lad-
ders and store the accompanying quotes. Figure 1 shows the results of our analysis as a
Hierarchical Value Map (HVM). A HVM is a graphical representation of means–end
chains. The HVM provides the aggregated cognitive map of the 16 respondents, sum-
ming up all the categories and ladders we found. It shows how the four EA stakeholder
groups – Change Manager (CM), Program Manager (PM), Application Manager (AM),
and Project Leader (PL) – expect the EA function’s service delivery attributes to result
into consequences that contribute to achieving their personal objectives (values).

The HVM consists of nodes which represent the categories perceived as most im-
portant by the respondents. The size of the nodes depicts their relative importance. To
keep the labels readable, categories mentioned by fewer than 8 respondents have the
same size. The nodes are represented as pie charts indicating the ratio of importance
of each category between the four stakeholder groups. This ratio of importance is
based on how many of each stakeholder group’s respondents mentioned a specific
category in the interviews. We took into account the differences in total respondents
for each group, and corrected the ratio accordingly.

The lines between the nodes represent the positive linkages between the concepts
as the respondents perceive them. The direction of the relations between the catego-
ries is from bottom to top. The thickness of the lines between categories indicates
how often these categories have been related to each other. To keep the HVM

30 B. van der Raadt, S. Schouten, and H. van Vliet

comprehensible, but at the same time ensure its level of detail, we applied a cut-off
level of 4 to filter out the less important categories and relations. The cut-off level
determines the minimally required number of recurrence of categories and relations
that will be showed in the HVM.

To illustrate how to interpret the HVM, Figure 1 shows that stakeholders perceive
‘clear roles’ within the EA function and ‘proactive behavior’ of architects to be the
most important attributes that lead to ‘close cooperation’ between stakeholders and
architects. Other attributes (i.e., ‘communication structure’ and ‘think along’) also
contribute to ‘close cooperation’, but are perceived less important. A clear ‘govern-
ance structure’ indirectly results in ‘close cooperation’, because it enables a proper
‘communication structure’. This shows that stakeholders expect low level attributes to
help achieve higher level attributes.

Stakeholders perceive attributes of the services and products of the EA function re-
sult in consequences. There is also a stratification in consequences, with ‘EA confor-
mance’ and ‘EA decision making’ as high level consequences that are achieved
through lower level consequence fulfillment (i.e., ‘to-be insight’, ‘as-is insight’, ‘close
cooperation’, ‘concrete EA plans’, and ‘EA product quality’).

Finally, consequences are perceived to result in achievement of values – e.g., ‘to-
be insight’ results in improved ‘monitoring’ of organizational changes. ‘Acceptance
for changes’ as described in the to-be architecture plays a minor role, but is the only
consequence that directly links attributes of the EA function (‘governance processes’
and ‘communication’) to values of the stakeholders (‘horizontal alignment’ and ‘re-
alization of strategy’).

Figure 1 shows that all stakeholders, including project leaders, perceive ‘EA con-
formance’ as the most important consequence that contributes to achieving their val-
ues. This is striking, because enforcing EA conformance is accompanied with putting
up restrictions for projects through EA products. Therefore, we expected ‘EA con-
formance’ to be perceived as a negative consequence of the EA function, especially
by the project leader stakeholder group. Apparently, stakeholders recognize that uni-
formity and coherency in implementing changes is a critical success factor for the
organization, and see it as a positive consequence essential for achieving their high-
level objectives (values).

As a result of our analysis, we concluded that stakeholders have high expectations
regarding the EA function. In this case study, it seemed infeasible for the EA function
to fulfill all expectations. We found that stakeholder satisfaction with the EA func-
tion’s performance differed for each stakeholder group, depending on the level of
perceived fulfillment of their expectations. Also, we saw a relation between the inten-
sity and efficiency of the cooperation with architects and the level of satisfaction with
the EA function’s performance. For example, the change managers were little satis-
fied with the performance of the EA function, because EA did not help them in the
‘monitoring of changes’ and the architects did not have ‘close cooperation’ with them.
The members of the application management department were not satisfied with the
EA function, because the architects did not provide ‘as-is insight’ in their operational
application landscape, and did not act as a gate keeper ensuring ‘EA conformance’
and thus ‘operational continuity’. The project leader stakeholder group was relatively
satisfied with the performance of the EA function, because the ‘functional’ and ‘tech-
nical knowledge’ of the architects helped them in project level ‘decision making’.

 Stakeholder Perception of Enterprise Architecture 31

Fig. 1. The Hierarchical Value Map shows the attributes of the EA function as experienced by
the EA stakeholders, and their relations with consequences and values as experienced by the
EA stakeholders

7 Discussion

Related work on EA stakeholders by Lindström et al. describes how EA frameworks
provide the CIO – as the primary EA stakeholder – a means for decision support,

32 B. van der Raadt, S. Schouten, and H. van Vliet

addressing his/her highest priority concerns [20]. Although important, the CIO is just
one stakeholder of the many functions, roles and bodies that make up the EA function
[5]. Clerc et al. describe the software architect’s mindset, including some use cases
that are stakeholder-centric and involve identifying stakeholders and communicating
the architecture towards these stakeholders [21]. Even though they describe elements
of importance for the collaboration between architects and stakeholders, they
focus primarily on the software architect’s perspective. Smolander et al. describe
stakeholder participation in software architecture design, including their problems in
relation to architecture, and the rationale for architecture description they emphasize
[15]. However, they primarily focus on the role of stakeholders from the software
architect’s perspective. They do not provide insight in the specific objectives of EA
stakeholder who are not architects themselves, and the way in which they expect
architecture to help them achieve those objectives.

The study we present in this paper is exploratory. Reason for this is the limited
number of respondents for each stakeholder group; 3 to 5 respondents per group is too
small to draw detailed conclusions. Also, we conducted this study at one organization,
which is insufficient to draw generic conclusions. We have not included the
‘designer’ and ‘Chief Information Officer’ roles, but the literature already provided
insight in the relation of these roles with EA (e.g., [15], [20]). Also, the case study
lacked stakeholders external to company A, because the EA function was quite inter-
nally oriented.

8 Conclusions

In this article we present the cognitive map of various stakeholder groups that take
part in the EA function of a medium to large company. We used a soft-laddering to
build means-end chains that reveal how stakeholders expect the observable attributes
of the EA function to help them achieve their objectives. The extent to which they
perceive the attributes of the EA function to contribute to their goal-achievement
determines their satisfaction with the performance of the EA function. In order for
architects and EA stakeholders to better collaborate and make the EA function effec-
tive, there should be proper mutual understanding. The cognitive map of EA stake-
holders we present in this article allows architects to better understand what the other
EA stakeholders expect from them. The attributes in the EA function we found form a
basis for architects to improve their EA service delivery – e.g., define clear roles, and
behave pro-actively in providing support. This will increase the willingness for EA
stakeholders to actively participate in the EA function. Ultimately, this will improve
EA function effectiveness, including the quality of the EA itself.

The cognitive map shows that different EA stakeholder groups pursue different ob-
jectives, related to their specific role within the organization. An important conclusion
is that it is difficult to satisfy all stakeholders. Their objectives may be conflicting –
e.g., the need of change managers for innovation and change versus the pursuit for
operational continuity and stability of the operational manager. Based on this study,
the architect is able to prioritize which stakeholder groups to serve, and determine a
strategy accordingly. Completely ignoring a specific stakeholder group is not advis-
able. The EA function will only achieve maximum effectiveness when all stake-
holders involved collaborate efficiently towards a shared goal.

 Stakeholder Perception of Enterprise Architecture 33

Our sample of 16 interviews – with an average of 4 interviews for each stakeholder
group – conducted at one organization is too specific and insufficient to draw general
conclusions. This research is a first exploratory study of the stakeholders of the EA
function. Up till now, there was little knowhow of stakeholder perception of the EA
function. We are currently conducting research to get a more in-depth understanding
of the expectations of the various stakeholder groups regarding the EA function. Our
objective is to construct a standard customer satisfaction assessment approach, with
which we can help client organizations become more effective with EA.

References

1. Pablo, A.L.: Determinants of Acquisition Integration Level: A Decision-Making Perspec-
tive. The Academy of Management Journal 37(4), 803–836 (1994)

2. Myers, B.L., Kappelman, L.A., Prybutok, V.R.: A comprehensive model for assessing the
quality and productivity of the information systems function: toward a theory for informa-
tion systems assessment. In information Systems Success Measurement. In: Garrity, E.J.,
Sanders, G.L. (eds.) Idea Group Information Technology Management Series, pp. 94–121.
IGI Publishing, Hershey (1998)

3. Moore, G.A.: Strategy and your stronger hand. Harvard Business Review 83(12), 62–71
(2005)

4. April, A., Huffman Hayes, J., Abran, A., Dumke, R.: Software Maintenance Maturity
Model (SMmm): the software maintenance process model. Journal of Software Mainte-
nance and Evolution: Research and Practice 17(13), 197–223 (2005)

5. Van der Raadt, B., Van Vliet, J.C.: Designing the Enterprise Architecture Function. In:
Fourth International Conference on the Quality of Software-Architectures (QoSA 2008)
(March 2008) (to appear)

6. Van der Raadt, B., Soetendal, J., Perdeck, M., Van Vliet, H.: Polyphony in Architecture.
In: Proceedings 26th International Conference on Software Engineering (ICSE 2004), pp.
533–542. IEEE Computer Society, Los Alamitos (2004)

7. Van der Raadt, B., Slot, R., Van Vliet, H.: Experience Report: Assessing a Global Finan-
cial Services Company on its Enterprise Architecture Effectiveness Using NAOMI. In:
Proceedings of the 40th Annual Hawaii international Conference on System Sciences
(HICSS 2007), p. 218b. IEEE Computer Society, Washington (January 2007)

8. Mulholland, A., Macaulay, A.L.: Architecture and the Integrated Architecture Framework.
Capgemini (2006),
http://www.capgemini.com/services/soa/ent_architecture/iaf/

9. Kruchten, P.: The Software Architect. In: Donohoe, P. (ed.) Software Architecture
(WICSA1), pp. 565–583. Kluwer Academic Publishers, Dordrecht (1999)

10. Peterson, R.: Crafting Information Technology Governance. Information Systems Man-
agement 21(4), 7–22 (2004)

11. Nutt, P.C.: Types of Organizational Decision Processes. Administrative Science Quar-
terly 29(3), 414–450 (1984)

12. Zeithaml, V.A., Parasuraman, A., Berry, L.L.: Delivering quality service: balancing cus-
tomer perceptions and expectations. The Free Press, New York (1990)

13. Gutman, J.: Means–End Chains as Goal Hierarchies. Psychology & Marketing 14(6), 545–
560 (1997)

14. Boh, W., Yellin, D.: Using Enterprise Architecture Standards in Managing Information
Technology. Journal of Management Information Systems 23(3), 163–207 (2007)

34 B. van der Raadt, S. Schouten, and H. van Vliet

15. Smolander, K., Päivärinta, T.: Describing and Communicating Software Architecture in
Practice: Observations on Stakeholders and Rationale. In: Pidduck, A.B., Mylopoulos, J.,
Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 117–133. Springer, Hei-
delberg (2002)

16. Voss, R., et al.: Service quality in higher education: The role of student expectations. J.
Bus Res. (2007)

17. Weick, K.E.: The social psychology of organizing. Addison-Wesley Pub. Co., Reading
(1979)

18. Brewer, G.D.: Assessing Outcomes and Effects. In: Cameron, K.S., Whetten, D.A. (eds.)
Organizational Effectiveness: A Comparison of Multiple Models. Academic Press, San
Diego (1983)

19. Bettis, R.A., Prahalad, C.K.: The Dominant Logic: Retrospective and Extension. Strategic
Management Journal 16(1), 5–14 (1995)

20. Lindström, Å., Johnson, P., Johansson, E., Ekstedt, M., Simonsson, M.: A survey on CIO
concerns-do enterprise architecture frameworks support them? Information Systems Fron-
tiers 8(2), 81–90 (2006)

21. Clerc, V., Lago, P., van Vliet, H.: The Architect’s Mindset. In: Overhage, S., Szyperski,
C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 231–249.
Springer, Heidelberg (2008)

Web Services Orchestrations Evolution: A

Merge Process for Behavioral Evolution

Sébastien Mosser, Mireille Blay-Fornarino, and Michel Riveill

University of Nice Sophia – Antipolis
Cnrs, I3s Laboratory, Rainbow team

Sophia Antipolis, France
{mosser,blay,riveill}@polytech.unice.fr

Abstract. Services Oriented Architectures preach loosely-coupled ser-
vices and high–level composition mechanisms, using for example Web
Services to define services and Orchestrations to compose them. But or-
chestration evolutions imply modification at source code level. This arti-
cle shows how the orchestration paradigm itself can be used to support
evolution of Web Services Orchestrations through a behavioral merge
process. Using the same model to express orchestrations and evolutions,
we expose formally and illustrate in this contribution a merging process
helping Wsoa administrators to deal with behavioral evolutions.

1 Introduction

Services Oriented Architectures (Soa) [1] use the concept of service as an el-
ementary brick to assemble complex systems. Services are loosely–coupled by
definition, and complex services are build upon basics ones using compositions
mechanisms. The loose coupling methodology enables the separation of concerns
and helps systems evolution.

Using Web Services as elementary services, and Orchestrations [2] as compo-
sition mechanism, Web Service Oriented Architectures (Wsoa) provides a way
to implement these loosely–coupled architectures. W3c define orchestrations as
“the pattern of interactions that a Web Service agent must follow in order to
achieve its goal” [3]. Specialized (i.e. elementary) code is written inside Web
Services, and business processes are described as an orchestration of those Web
Services.

Code manipulations, like the refactoring operation, help software evolution
support. In [4], authors identify some challenges for future research on software
evolution and focus on the abstraction need. Lehman identifies as his first “Law
of Software Evolution” [5] that “A program that is used must be continually
adapted else it becomes progressively less satisfactory”. As Wsoa focus on busi-
ness reactivity and eternal adaptation to fit with market and anticipate trends,
this well–known law makes sense twenty four hours a day.

This contribution deals with Wsoa orchestrations evolutions, focusing on
behavioral evolutions. Our originality is to use the same model to represent the

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 35–49, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

36 S. Mosser, M. Blay-Fornarino, and M. Riveill

behavior of orchestrations and evolutions. We propose a merging algorithm build
upon this formal model helping integration of evolutions into orchestrations.

We identify in Sect. 2 the need of evolution capabilities inside orchestrations.
Sect. 3 proposes a high level model for orchestrations supporting evolution rea-
soning and Sect. 4 shows how this model works on an example. Sect. 5 exposes
validation of this work, Sect. 6 discusses related work about orchestrations evo-
lution mechanisms. Finally, Sect. 7 concludes this paper and shows perspectives
of our contribution.

2 Orchestration Behavioral Evolutions

Following the W3c definition, orchestrations can be represented as a “white–
box service”: “service” because it basically defines a public interface (including
data types) and “white–box” means that we can understand the behavior of such
services, defined as the exchange of messages between other services.

Obviously, orchestrations can evolve in three ways: (i) interface, (ii) data type
and (iii) behavior. This study focuses on static behavioral changes, i.e. the evo-
lution process (presented here in Sect 3) handles orchestrations and evolution in
a non–production state. Interface and data types evolutions are out of the scope
of this paper, and refer more to refactoring [6] and model checking concepts.

In [7], authors sketched a taxonomy dealing with software changes and evo-
lution. Using this taxonomy, we express in Tab. 1 the kind of evolutions this
contribution deals with: our goal is to propose a partially–automated evolution
process using a high–level reasoning abstraction.

Example: We consider here an application called Seduite, based on a Wsoa.
This software uses different atomic services as information sources and users
access to information using an orchestration called InfoProvider (Fig. 1). It
describes a basic business process: using an authorization ticket and a user
profile as input data, it will return informations as result from a source
called News in accordance with profile, if the given ticket is a valid ticket.

Table 1. Wsoa evolution using [Buckley et al, 2005] taxonomy

Temporal Properties (When)

Time of change: static Change history: parallel
Change frequency: periodically Anticipation: unanticipated

Object of Change (Where)

Artifact: orchestration Granularity: coarse–grained
Change propagation: traceable Impact: local

Change Support (How)

Degree of Automation: partially–automated Change Type: semantic
Degree of Formality: partial –

Web Services Orchestrations Evolution 37

Two kinds of evolutions commonly encountered1 can be illustrated through the
Seduite example:

– How to add a new source of information service into InfoProvider (e.g. a
weather forecasting service, a calendar service, events notification, restaurant
menu, TV shows, . . .).

– How to ensure that a given input profile is correct (not empty, conform with
current usage of the application, . . .) before invoking sources ?

Fig. 1. InfoProvider orchestration using Eclipse Bpel Designer

Obviously, all these kinds of behavioral evolutions can be done at the orches-
tration language level by editing the source code (e.g. adding some activities,
conditional statements, exceptions, . . .) but this process is error-prone and off–
putting.

Moreover, when the user wants to apply n different evolutions into the same
orchestration (e.g. adding two new sources of informations), she can expect from
the system some support mechanisms to ease the task. Our goal is to automate
this process, providing an evolutions merging algorithm. This algorithm lets the
user focus on evolution interactions and semantic. Next sections focus on these
points, proposing an orchestration model able to merge evolutions.

3 A High Level Reasoning Model: “ADORE”

To perform high level composition and to allow reasoning on orchestrations and
evolutions, we define a model called Adore : “Activity moDel suppOrting oR-
chestration Evolution”. This section describes formally this model, and shows on
1 More informations and use cases at http://anubis.polytech.unice.fr/jSeduite

http://anubis.polytech.unice.fr/jSeduite

38 S. Mosser, M. Blay-Fornarino, and M. Riveill

the Seduite example how we can express an existing orchestration using it. It
also describes the meaning of the Merge operation enabling our process.

3.1 ADORE Formalism: Orchestrations and Evolutions

Orchestration: An orchestration is a tuple (A�, ≺�) representing a behavior.
A� is a set of Activity {a1, . . . , an} and ≺� a partial ordering between these
activities.

Activity: An activity is a tuple (uid, K, V �
in, Vout, G

�). Each activity is unique
inside an Orchestration and identified by uid. K refers to the Kind of this ac-
tivity, V �

in (resp. Vout) represent inputs (resp. output) Variables (identified by
name). Constants are represented as variables with immutable content. An ac-
tivity can take multiple input variables {in1 . . . inn} but returns exactly one
result Vout (possibly ∅). G� represents conditional guards and allows conditional
expressions (if/then/else).

Partial ordering (≺, precedence rules): Activities are ordered using an operator
≺. The expression a1 ≺ a2 is called a precedence rule and means that a2 must
wait the end of a1 to start its own execution. As our algorithm is based on acyclic
behavior, we do not allow loop expressiveness for now.

Kind: We use in that model a subset of Bpel specifications [8]. We consider the
following kind of allowed activity: (i) variable assignment (assign(function)),
(ii) service invocation (invoke(Service, Operation)), (iii) message reception
(receive), (iv) response sending (reply) and (v) fault report (throw). To deal
with conditional statement, we add a test activity (a test activity evaluate a
boolean predicate. It has exactly one output variable).

Guards: Guards refers to the expected test activity, and add a “true or false”
semantic into our model. Adding guard(at, true) as a guard on an activity a
means that a will start only if at (which is a test activity) output is evaluated
to true. Implicitly, it exists a precedence rule at ≺ a.

Fig. 2 represents the InfoProvider orchestration using both textual and
graphical formalisms (inspired by Uml activity diagrams).

Evolution: An Evolution can be considered as a piece of orchestration which
can be plugged into existing orchestrations. Evolution is therefore as a superset
of orchestrations. A� contains exactly one hook special activity which represent
where the evolution will be connected into an orchestration.

Two special activities P and S refers to targeted orchestrations where they
represent hook predecessors (resp. successors) in targeted partial ordering. Con-
sidering Evolution as a superset of Orchestration means that an orchestration
cannot contains any hook, P or S occurrence. Fig. 3 represent graphically an
evolution.

Web Services Orchestrations Evolution 39

O = ({a1, . . . , a6}, {a1 ≺ a2, a2 ≺ a3, a3 ≺ a4, a4 ≺ a5, a3 ≺ a6})
a1 ≡ (a1, receive, {ticket, profile}, ∅, ∅)
a2 ≡ (a2, invoke(Auth, Check), {ticket}, c, ∅)
a3 ≡ (a3, test(isEqual), {c, true}, ok, ∅)
a4 ≡ (a4, invoke(News, GetInfo), {profile}, result, {guard(a3, true)})
a5 ≡ (a5, reply, {result}, ∅, {guard(a3, true)})
a6 ≡ (a6, throw, {“Bad Ticket”}, ∅, {guard(a3, false)})

Fig. 2. O ≡ Infoprovider orchestration using Adore formalism

Substitution: Stickel defines a substitution σ in [9] as “a set of substitution
components with distinct first elements, that is, distinct variables being substi-
tuted for”. A substitution component is an ordered pair of two variables x and
y (written as x → y), denoting the replacement of the x by y (x cannot be a
constant). Applying a substitution on an activity performs those replacements.

As boxes and arrows are more readable than huge sets of equations, we define
a graphical syntax to represent Adore entities. Inspired from the Uml activity
diagram formalism, each activity is represented as a box, and precedence rules
using arrows between boxes (a1 → a2 ≡ a1 ≺ a2). Guards are represented
as labels on arrows. To represent hook predecessors and successors, we use the
start/end syntax from Uml: • refers to P, and � to S.

3.2 Merging Process

Using the Adore model, we define a merging process enabling the automatic in-
tegration of n evolutions into an orchestration. This process composes evolutions
between each others, and then, merge the resulting evolution with the targeted
orchestration.

40 S. Mosser, M. Blay-Fornarino, and M. Riveill

Global overview: Merge({e1, . . . , en}, {k1, . . . , km}, o, b) → o′

The process takes as input a set of evolutions {e1, . . . , en}. As merge conflicts can
occur, user can express some knowledge {k1, . . . , km} to solve them. A knowledge
ki can be a substitution component σi, or new elements to add (activity, prece-
dence rule or guard). The target of the evolution is an orchestration o and a bind-
ing b ≡ bind(hook → ai) expresses where the evolution will be integrated inside o
activities. The process results in a new orchestration o′. It does not have any side
effects on existing orchestration or evolutions, as it works on a duplicated set of
elements2. We consider it as a four steps process, described here.

1) Merge({e1, . . . , en}, {k1, . . . , km}) → e′ (“Evolution merge”)
As the global process does not have any side effect, all elements (activity, prece-
dence) of {e1, . . . , en} are duplicated before doing anything. This step produces
a new evolution e′, where all evolutions {e1, . . . , en} are merged. From all hook
points {h1, . . . , hn}, we generate a new activity h′ where input variables set is
the union of hi input variables set. The output variable is unified into a new
one (using a σ). The partial ordering of e′ is an union of existing partial order-
ing, taking care of hooks unification. Guards on h′ are composed as a union of
existing guards on hi, and propagated to h′ successors.

2) DetectConflict(e′) → {conflict1, . . . , conflictn} (“Conflict detection”)
At this step, we analyze the output of the previous step and detect if needed some
merge conflicts3. Some constructions are not allowed in orchestration formalism,
like (i)concurrent write access to a variable, (ii) multiple reply activities (under
non–exclusive conditions), (iii) multiple throw activities (under non–exclusive
conditions) or (iv) write access to a constant. To perform conflict resolution,
we use an incremental approach [11]: the process automatically returns conflicts
to the user, and she gives in response a knowledge (ki, e.g. adding an order
between two concurrent write access to a variable) to solve this conflict. The
merging process is then recalled with this new knowledge.

3) Merge(o, e′, b, {k1, . . . , km}) → o′ (“Orchestration merge”)
Here, we consider that e′ represents the merged evolution (output of step 2) with-
out any conflicts. We now integrate e′ into the original orchestration (following
the binding specification b ≡ σ(hook → ah)) and produce a new orchestration
o′. P and S are substituted with ah predecessors and successors. We compute a
unifying substitution where each hook variable (input, output) is bound to its
equivalent in ah. As in step 1, we perform guards union and propagate resulting
guard set to ah successors.

4) DetectConflict(o′) → {conflict1, . . . , conflictn} (“Conflict detection”)
This step is similar to step two except that a new kind of conflict based on
evolution variables can be detected: all used variables must be declared and
2 Duplication implies variable renaming to avoid conflicts and new uids for concerned

activities.
3 More information about conflict detection can be found in [10].

Web Services Orchestrations Evolution 41

assigned before attempting to be read. Orchestration parameters are assigned as
receive inputs (receiving a constant is considered as a conflict). Other variables
are assigned when used as output of an activity.

As a conclusion, we can see that step 1 and 2 can be done in an abstract manner:
they consist of composing evolutions, without any knowledge about target. The
last steps imply real knowledge about the target, and business–specific skills.
These two operations can be performed by two different users.

4 Illustrating Merge Process

This section illustrates the previously defined merge process. The first part ex-
plains on an example how activities duplication and unification works. The sec-
ond part illustrates a full merge process, integrating three evolutions into the
InfoProvider orchestration.

4.1 Activities Management: Duplication, Substitution and
Unification

Guided by the Seduite description, we can imagine a frequent action for the
administrator: “How to add a new source of information ?”. To automate this
action, an evolution Es is expressed (Fig. 3). Es invokes a NewSource service,
and appends its result to the result of the hook activity.

Es describes abstractly how to add a new source of informations. If an admin-
istrator wants to add a Weather source of information, she will specialize the
semantic of this evolution using a substitution σx. Now, we consider two evo-
lutions obtained by substitutions from the previous one (Ew adding a Weather
source, and Ee adding an Events source) and focus on the first and second steps
of the merge process, i.e. applying Ew⊕e ≡ Merge({Ew, Ee}, ∅) .

σw ≡ σ({NewSource → Weather}) ⇒ Ew ≡ σw(Es)
σe ≡ σ({NewSource → Events}) ⇒ Ee ≡ σe(Es)

ES ≡ ({h, p2, p3},

{P ≺ h, h ≺ p2, p2 ≺ p3, p3 ≺ S})
h ≡ (h, hook, {P}, R, ∅)

p2 ≡ (p2, invoke(NewSource, GetInfo),

{P}, NS, ∅)
p3 ≡ (p3, assign(append),{R, NS}, R, ∅)

Fig. 3. Es ≡ “How to add a new source of informations ?”

42 S. Mosser, M. Blay-Fornarino, and M. Riveill

First of all, we duplicate each activity to avoid naming conflict (uids, variable
names). The duplication produces the following result:

EEw∪Ee ≡ rename(Ew) ∪ rename(Ee)

≡ ({hw, pw
2 , pw

3 , he, pe
2, p

e
3},

{P ≺ hw, hw ≺ pw
2 , pw

2 ≺ pw
3 , pw

3 ≺ S, P ≺ he, he ≺ pe
2, p

e
2 ≺ pe

3, p
e
3 ≺ S})

hw ≡ (hw, hook, {Pw}, Rw, ∅)
pw
2 ≡ (pw

2 , invoke(Weather,GetInfo), {Pw}, NSw, ∅)
pw
3 ≡ (pw

3 , assign(append),{Rw, NSw}, RW , ∅)
he ≡ (he, hook, {Pe}, Re, ∅)
pe
2 ≡ (pe

2, invoke(Events, GetInfo), {Pe}, NSe, ∅)
pe
3 ≡ (pe

3, assign(append),{Re, NSe}, Re, ∅)

The process will now perform merge of he and hw into h. As Rw and Re are
output variables of a unified activity, they must be unified too in a R variable.
The process does not have any knowledge ki about inputs parameters Pw and Pe,
and treat them as two different variables. This merge produces a substitution we
apply onto the merged evolution to produce Fig. 4 result. The conflict detection
step (DetectConflict(Ew⊕e)) will return a conflict, as there is no precedence
rule between two different write into variable R.

To solve this conflict, we add a precedence rule between these two activities.
If we consider that Weather information is more important than Events one, we
can express a knowledge k1 to represent it. Even if there is no conflict leading
to it, we can also specify to the merging process using k2 that the hook input
variables have to be substituted to the same P variable.

k1 ≡ augmentOrder(pw
3 ≺ pe

3)
k2 ≡ σ({Pw → P, Pe → P})

Fig. 4. Merge({Ew, Ee}, ∅) ⇒ ConcurrentWriteConflict(R, {pw
3 , pe

3})

Web Services Orchestrations Evolution 43

Fig. 5. Ew⊕e ≡ Merge({Ew, Ee}, {k1, k2})

These knowledge allow the merge process to perform full merge, and conflict
detection returns an empty set of conflicts. We obtain as output a new evolution
Ew⊕e, Fig. 5.

4.2 Practicing the Merge Algorithm

In this section, we consider that the administrator wants to perform the following
evolutions inside InfoProvider (Fig. 2): (i) add a weather source of informa-
tion (Ew), (ii) add an events source of information (Ee) and (iii) check profile
correctness before attempting to retrieve informations (Ep). Ep asks a service
to verify the given profile, and throws an exception if this profile is not correct
(Fig. 6).

As we attempt to merge Ew and Ep for a second time, we reuse the knowledge
set {k1, k2} from previous section and avoid the conflict detection step to clarify
text. The administrator knows that all hook parameters should be unified, as
they all refer to profile. She expresses this knowledge by adding a knowledge
k3 expressing this unification between hook parameters:

k1 ≡ augmentOrder(pw
3 ≺ pe

3)
k2 ≡ σ({Pw → P, Pe → P})
k3 ≡ σ({Q → P})

Following the merge algorithm, we perform Merge({Ew, Ee, Ep}, {k1, k2, k3})
and compute Ew⊕e⊕p (Fig. 7) as a result of the first merge step. The guard on

44 S. Mosser, M. Blay-Fornarino, and M. Riveill

Fig. 6. Ep ≡ Checking profile correctness evolution

Fig. 7. Ew⊕e⊕p ≡ Merge({Ew, Ee, Ep}, {k1, k2, k3})

hook coming from Ep is propagated to successors of hook (now guarded by
guard(q2, true)). As there is no conflict detected at second step, we can perform
the orchestration merge. Our evolution must be hooked on information retrieving
activity in o, i.e. a4.

When invoking Merge(o, Ew⊕e⊕p, bind(hook → a4){k1, k2, k3}) at third step,
the merge process binds hook with a4. We perform usual substitution of hook out-
put variable with a4 output variable, without any conflict. Moreover, as a4 and
hook activities have only one input variable, we can deduce a unification between
these two variables. The activity q1 interacts with a1, and it generates an Unas-
signedVariable conflict (q1 read profile content, but has no predecessors). As
profile is an input of o, this assignment is performed by the receive activity

Web Services Orchestrations Evolution 45

Fig. 8. O′ ≡ Merge({Ew, Ee, Ep}, {k1, k2, k3}, o, σ(hook → a4))

a1. We can automatically add a precedence rule a1 ≺ q1 to solve this conflict. Fig.
8 represents the final orchestration o′, result of the merge process.

5 Validation and Implementation

Seduite example analysis: We can analyze the example shown previously
using some metrics. We compare the obtained behavior with respect to three

46 S. Mosser, M. Blay-Fornarino, and M. Riveill

parameters: (i) |Act| the cardinality of activities set, (ii) | ≺ | the cardinality of
partial orderings and (iii) |k| the cardinality of the knowledge set. We use the
|Xm| notation to express how many elements of |X | were impacted by the merge
process.

Tab 2 exposes results of this analysis. The last line analyzes the final or-
chestration o′. We can see that 93% of precedence rules can be automatically
managed by the merge process. Moreover, 54% of activities must be adapted
to be consistent with the evolution, and all these adaptations are automatically
performed by the merge process.

Table 2. Measuring Merge impact on Seduite example

Behavior |Act| |Actm| | ≺ | | ≺m | |k| |km|
Ew⊕e 5 5 (100%) 7 6 (85%) 2 –

Ep⊕w⊕e 8 6 (75%) 10 9 (90%) 3 –

O′ 13 7 (54%) 14 13 (93%) 4 1 (25%)

Implementation: the merge process is implemented using Prolog. It allows
partially–automated orchestration evolution. Based on Emf [12], we develop a
model-driven software to deal with the merge process. A Java object front–end
allows final user to interactively use the Prolog merge engine in a user–friendly
way. More information can be found on Adore web-site4.

The Seduite system is used to support research on user profiles management
[13] and to validate a French national research project called Faros

5, dealing
with Soa reliability. The InfoProvider orchestration is implemented using the
Bpel 2.0 standard. It runs over the Apache Ode open–source orchestration
engine. Seduite applications should be deployed in different academic institu-
tions. We are working on a user-friendly environnment that supports controled
evolutions. It ’s the current validation for web services orchestrations evolution
merging. More information about Seduite implementation can be found on
Seduite web site6. Further validation is an ongoing work. We focus our exper-
iments on large–scale work-flows from grid–computing research field.

6 Related Work and Discussions

In [14], Rémy Douence defines Aspect Oriented Programming (Aop) as:

Aop is a set of language mechanisms which enable the introduction of
non anticipated functionalities in a base application. Without these mech-
anisms, the code of the base application should be modified in several
locations. Aop enables to modularise these functionalities

4 http://rainbow.i3s.unice.fr/adore
5 http://www.lifl.fr/faros (french only)
6 http//anubis.polytech.unice.fr/jSeduite

http://rainbow.i3s.unice.fr/adore
http://www.lifl.fr/faros
http//anubis.polytech.unice.fr/jSeduite

Web Services Orchestrations Evolution 47

Existent work [15,16] bind Aop concepts to Orchestrations. These approaches
weave aspects inside the orchestration engine, and allow integration of unforeseen
evolutions directly into the targeted orchestration. These approaches imply mod-
ifications of orchestration engines to add the aspect weaver inside it. Moreover,
users will have to (i) implement their orchestrations using Bpel, (ii) use the
aspect language to express new functionality and finally (iii) deploy orchestra-
tions and weave aspects into an ad’hoc engine. Aspects interactions (i.e. different
aspects woven at the same point) are solved by ordering aspect codes into block
(this code will be executed before that one). Aop considers special keywords to
decorate pointcuts with advices (before, around, after) and use proceed keyword
to represent normal behavior of woven code. Considering the hook as a proceed
and its binding as a pointcut selection, our approach supports the enhancement
of the original behavior of an orchestration. As we reify and then merge behav-
ior instead of expressing advice as black boxes and ordering them, we focus on
parallel execution of distinct evolutions (we do not create order between evolu-
tions unless it is necessary). Moreover, the Adore behavior reification allows
evolution to be composed in a quasi–automatic way, detecting conflits to ensure
orchestration validity. Contrarily to Aop which can be dynamic, our approach
only considers static evolutions. The evolution process is done at model level
and then refined after success into Bpel code using usual models transforma-
tion tools. This approach does not require any specific orchestration engine. As
soon as orchestration engines will support dynamic orchestration changes, our
approach could be used at runtime.

Former work [17] defines an associative and commutative merge algorithm
dealing with components interactions. As this approach is a superset of the pre-
vious one focused on orchestrations and Wsoa, we can restrict the algorithm
described here to ensure associativity and commutativity. If we consider evolu-
tions always using a usual schema7 and no conflict resolution rules, we can ensure
theses properties. Proving associativity and commutativity in others cases is an
ongoing work.

Similar to the Uml templates, evolutions define generic orchestration view
whose some variables (template parameters) need to be bound. The Adore

model is dedicated to orchestration merging and binding step implies automatic
composition of elements. Knowldege is used to reduce the space adressed by
an evolution or to solve a conflict during this automatic merging. It plays the
equivalent role as composition directives as defined in [18] to compose models.

In conclusion, we claim that a high level reasoning model such as our merge
algorithm helps composition mechanisms.

7 Conclusions and Perspectives

In this article, we addressed the problem of Web Services orchestrations evolution
on behavioral part. After identifying some needs of evolution capability on a
real case orchestration, we restrict our investigations to behavioral evolutions.
7

P ≺ hook ≺ S.

48 S. Mosser, M. Blay-Fornarino, and M. Riveill

A formal model called Adore is proposed and we define a merge algorithm
able to compose in a quasi–automatic way evolutions into orchestrations. We
also show on an example how the algorithm works, detailing each steps of the
merge process and focusing on non–trivial parts. Furthermore, we show how this
process can help evolution composition and discuss our work with respect to
related work.

The work presented in this paper collaborates with the Wsoa administrator
for resolving semantic choices. She will help variable unification and conflict res-
olution using her knowledge and skills on the system. As the knowledge domain
is closed to enterprise system boundaries, we can imagine some semantic web
mechanisms to express such knowledge and capitalize enterprise knowledge.

We only consider evolution processes as an enrichment of an orchestration.
We never address the activities removal problem or activity substitution. Aop

define a delegate keyword to substitute the original behavior with a new one
[19]. The merge algorithm will have to be modified to take care of this kind of
evolution. So far, we consider evolution removal as a very simple operation: we
take the original orchestration and the set of wanted evolutions, excepted the
removed one. Finer grain mechanisms can be envisaged to deal with evolution
removal.

The merge algorithm presented here considers only one hook binding inside
the original orchestration. But it could be useful to allow multiple bindings (e.g.
selecting all reply activities inside an orchestration) at merge time. We also
consider that a hook point is an atomic activity. But evolutions can be applied
to a block of activities, adding scope concerns to the merge process [20]. These
two considerations implies the composition of overlapping evolutions when such
a situation occurs.

References

1. MacKenzie, M., Laskey, K., McCabe, F., Brown, P., Metz, R.: Reference Model
for Service Oriented Architecture 1.0. Technical Report wd-soa-rm-cd1, OASIS
(February 2006)

2. Peltz, C.: Web services orchestration and choreography. Computer 36(10) (2003)
3. W3C: Web service glossary. Technical report (2004)
4. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:

Challenges in software evolution. In: IWPSE 2005: Proceedings of the Eighth In-
ternational Workshop on Principles of Software Evolution, Washington, DC, USA,
pp. 13–22. IEEE Computer Society, Los Alamitos (2005)

5. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.)
EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

6. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

7. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy of
software change. Journal on Software Maintenance and Evolution: Research and
Practice 17(5), 309–332 (2005)

Web Services Orchestrations Evolution 49

8. Jordan, D., Evedmon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., Gúızar, A., Kartha, N., Liu, K., Khalaf, R.,
Konig, D., Marin, M., Mehta, V., Thatte, S., Van der Rijn, D., Yendluri, P., Yiu,
A.: Web services business process execution language version 2.0. Technical report,
OASIS (2007)

9. Stickel, M.E.: A unification algorithm for associative-commutative functions. J.
ACM 28(3), 423–434 (1981)

10. Nemo, C., Blay-Fornarino, M., Kniesel, G., Riveill, M.: Semantic Orchestrations
Merging - Towards Composition of Overlapping Orchestrations. In: Filipe, J. (ed.)
9th International Conference on Enterprise Information Systems (ICEIS 2007),
Funchal, Madeira (June 2007)

11. Mens, T., Van Der Straeten, R.: Incremental resolution of model inconsistencies. In:
Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 111–126.
Springer, Heidelberg (2007)

12. Merks, E., Eliersick, R., Grose, T., Budinsky, F., Steinberg, D.: The Eclipse Mod-
eling Framework. Addison-Wesley, Reading (2003)

13. Joffroy, C., Pinna-Déry, A.M., Renevier, P., Riveill, M.: Architecture Model For
Personalizing Interactive Service-Oriented Application. In: 11th Iasted Interna-
tional Conference on Software Engineering and Applications (SEA 2007), Cam-
bridge, Massachusetts, USA, Iasted, pp. 379–384. ACTA Press (2007)

14. Douence, R.: A restricted definition of AOP. In: Gybels, K., Hanenberg, S., Her-
rmann, S., Wloka, J. (eds.) European Interactive Workshop on Aspects in Software
(EIWAS) (September 2004)

15. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182.
Springer, Heidelberg (2004)

16. Courbis, C., Finkelstein, A.: Weaving aspects into web service orchestrations. In:
ICWS, pp. 219–226. IEEE Computer Society, Los Alamitos (2005)

17. Blay-Fornarino, M., Charfi, A., Emsellem, D., Pinna-Déry, A.M., Riveill, M.: Soft-
ware interaction. Journal of Object Technology (ETH Zurich) 3(10), 161–180
(2004)

18. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for composing aspect-oriented design class models.
In: Rashid, A., Akşit, M. (eds.) Transactions on Aspect-Oriented Software Devel-
opment I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)

19. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
(July 2003) ISBN-10: 1930110936, ISBN-13: 978-1930110939

20. Klein, J., Fleurey, F., Jézéquel, J.M.: Weaving multiple aspects in sequence dia-
grams. In: Rashid, A., Akşit, M. (eds.) Transactions on AOSD III. LNCS, vol. 4620,
pp. 167–199. Springer, Heidelberg (2007)

Evaluating Domain Design Approaches Using

Systematic Review

Ednaldo Dilorenzo de Souza Filho1,2, Ricardo de Oliveira Cavalcanti1,
Danuza F.S. Neiva1, Thiago H.B. Oliveira1,2, Liana Barachisio Lisboa1,2,

Eduardo Santana de Almeida2,
and Silvio Romero de Lemos Meira1,2

1 Federal University of Pernambuco (UFPE)
{edsf,roc3,dfsn,thbo,lbl,srlm}@cin.ufpe.br

2 Recife Center for Advanced Studies and Systems (C.E.S.A.R)
esa@cesar.org.br

Abstract. Software Product Lines are growing as a systematic way for
achieving reuse in software companies. It involves three processes: do-
main engineering, application engineering and management. In domain
engineering, assets that will be reused by products are developed, com-
posing the core assets. In this context, the product line architecture,
also called Domain Specific Software Architecture (DSSA), is an essen-
tial member in the collection of core assets. A good DSSA increases the
probability of the success of applications that will be instantiated from it.
In order to design a good DSSA, a process should be followed to manage
domain’s variability and commonality. On the other hand, companies
that are moving from single system development to software product
lines need systematic activities for taking advantage of existing assets
to develop a DSSA. Thus, this paper presents a systematic review on
domain design approaches, which can be useful for companies to under-
stand the current scenario, and to choose a more suitable one or adapt
them for their needs.

Keywords: Software Reuse, Software Product Line Architecture,
Domain Engineering, Systematic Review, Software Design.

1 Introduction

Software companies are looking for ways to achieve an increase of productivity,
and often software reuse is a viable approach to achieve this goal [5]. Software
reuse has the purpose of increasing not only productivity inside software projects
but also software quality, and cost reduction. Furthermore, currently, Software
Product Line (SPL) engineering is the main method to achieve reuse at large,
and suites very well for software companies working in a specific domain [5]. Ac-
cording to [21], the software product line engineering paradigm separate three
major processes: domain engineering, application engineering, and management.

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 50–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evaluating Domain Design Approaches Using Systematic Review 51

SEI [9] divides the SPL process in three activities (core asset development, prod-
uct development and management) which in general, has the same idea. In this
work, we consider Pohl’s [21] definition, for the sake of simplicity.

The domain engineering process is responsible for establishing a reusable plat-
form and defining what is common among the domain applications (common-
ality) and what varies in domain applications (variability) in a product line.
The platform consists of all types of software artifacts (Core Assets). According
to [21], the domain engineering process is composed of five key sub-processes:
product management, domain requirements engineering, domain design, domain
realization, and domain testing. In the domain design sub-process a common ar-
chitecture is developed for all applications within the domain. This architecture
is called Domain Specific Software Architecture (DSSA). The DSSA contains the
core structure of all applications within a domain, representing its commonality
and variability. Quality attributes from the applications in the domain may also
be represented in the DSSA in order to make them present with the applica-
tions derived from it. A good DSSA is an important success factor in a software
product line, however, according to [8] a deficient DSSA can bring problems to
the products derived from it. Among them we can list multiple versions of the
same asset, the increase of dependencies among assets, and the use of assets in
different contexts from where they were designed. Thus, a well defined approach
to achieve this architecture is very important.

Many companies have moved away from developing software from scratch
for each product and instead focused on the commonalities among the different
products, capturing those in a DSSA and an associated set of reusable assets
[8]. For companies that are working on a specific domain and have developed
assets, it is important to take advantage of these assets in order to improve the
productivity in building a DSSA. This paper presents a systematic review on
domain design approaches in order to understand and to summarize empirical
evidence about their activities, identifying their directions, strengths and weak-
nesses. This review is systematically performed, following Kitchenhams guideline
[15], which aids in assuring consistent results from individual studies (called pri-
mary studies).

The remainder of this paper is organizes as follows. Section 2 explains the
planning phase of the systematic review, while the description of how data was
extracted is described in Section 3. Section 4 details the selected approaches
for this review. Section 5 presents the results of the research, in Section 6 are
discussed the threats to validity. Section 7 describes the related work, Section
8 presents the systematic review summary and, finally Section 9 discusses the
concluding remarks and directions for the future work.

2 Planning

2.1 Review Protocol

According to [18] a review protocol specifies the activities that will be used
to undertake a specific systematic review and the most important activity is

52 E.D.S. Filho et al.

the research question. The research question comes from the need of aiding the
approaches evaluation. The question addressed by this review is: How existing
domain design approaches are organized?

This question is related to many aspects of the research, and thus it was fur-
ther divided into several sub-questions (SQ) in order to improve this systematic
review’s clarity:

SQ1. Do the approaches use architectural views? The purpose of this
question is to identify which approaches provide a reference for architectural
views and which ones they work with, since these views are an important source
of communication among the various stakeholders of the product line.

SQ2. What activities are adopted in the approaches for domain
design in domain engineering? The objective of this question is to analyze
which activities each approach follows in order to design the final DSSA.

SQ3. How do the approaches deal with variability? The purpose of
this question is to evaluate which steps, identified in the previous questions are
used for treating variability in the DSSA.

SQ4. Do the approaches adapt companies processes in order to treat
domain design variability and commonality? The aim of this question is
to analyze if the approaches adapt existing company process in order to develop
a DSSA during the systems development, or if they define a separate process to
develop a DSSA before the products development.

SQ5. Which models the approaches use to document the architec-
ture? This question has the objective to identify which models the approaches
use for documenting the architecture. This question has a strong relation with
the question SQ1, because in the definition of architectural views, models are
associated with each view in order to represent it.

SQ6. What are the strengths and weaknesses in the domain design
approaches? The purpose of this question is to analyze the key points and
drawbacks from each approach. This is relevant to decide if the evaluated ap-
proaches supply the need for development of DSSA from existing software. For
aid in finding these key points and drawbacks, this question was divided in three
sub-questions SQ6.1, SQ6.2, SQ6.3 as follows.

SQ6.1. Were the approaches experimented? In what environments
were the approaches experimented? This question has the purpose to dis-
cover where the approaches were experimented, if they were. It is very impor-
tant because their experimentation can bring us evidence about its efficiency.
Approaches being used in industry can bring us the maturity from the steps
applied by it.

SQ6.2. Do the approaches provide guidelines for component devel-
opment? This question has the intention of identifying if the approaches have
guidelines to indicate to the architect how to develop software components to
be used in the DSSA. Those guidelines should guide the architect on which
components are needed to be defined for the domain, and what funcionalities
they should have. The evidence that an approach has guidelines for component

Evaluating Domain Design Approaches Using Systematic Review 53

development can improve the chance of this approach be used since it avoids
that architects define components based on their feeling.

SQ6.3. Do the approaches provide guidelines for architecture recov-
ery? A good evidence for an approach that aims to support the development of
DSSA’s from existing assets is to provide guidelines for recovering existing archi-
tectures and translate them into a DSSA. Those guidelines should guide the ar-
chitect on how to extract the architecture from existing systems source code.

The main purpose of these questions is to try to assess and evaluate steps,
activities and, models developed in existing approaches addressing the fact that
most companies start a software product line from existing systems [5] . In this
systematic review, we followed Kitchenham’s guideline [15], where it is proposed
to discuss the main question from three viewpoints: population, which is the
involved actors; intervention, the approach taken; and outcomes, i.e. the results
of this approach:

Population: once this study focuses on identifying the approaches used for
Domain Design, the population is composed by domain architects and system
analysts;

Intervention: this review must search for indications that the domain design
approach can be complete for developing DSSA from existing products; and

Outcomes: the main objective of this study is to understand and to suma-
rize empirical evidence about the evaluated approaches activities, identifying
their directions, strengths and weaknesses.

3 Data Extraction

Primary studies are individual studies contributing to a systematic review. The
search strategy is the plan for finding as many primary studies as possible meet-
ing the aspects of the research question [15]. This strategy is divided in searching
for primaries studies and identifying the inclusion and exclusion criteria and se-
lecting the approaches.

3.1 Data Sources

The primary studies were searched scanning most relevant conference proceed-
ings, journals, books and grey literature. The steps performed for the data ex-
traction are described bellow:

– Main conferences in software reuse, software product lines, software archi-
tecture and, software engineering were analyzed and papers were selected
according to their abstract, in order to verify the relation with a domain
design approach.

– After that, the same research method was used for searching journals, looking
for software reuse, software product lines, software architecture and software
engineering, analyzing what the journal deals with.

54 E.D.S. Filho et al.

– Web search engines were also used for searching papers and journals. This re-
search was done through keyword matching domain architecture approaches.

– As next step, papers referenced by the authors of the found papers were
also analyzed. Thus, it was possible to identify a new set of keywords, such
as modeling, design, for the identification of other approaches. These new
keywords lead to a new round of searches on the web search engines.

– Moreover, we analyzed all types of literature not available through the nor-
mal bookselling channels (grey literature), such as technical reports from
research groups, specific books of software product line approaches, dis-
cussing the domain design phase and, Ph.D. theses. In the systematic re-
view page1, there are all the information about the conferences and journals
searched.

3.2 Criteria

According to [15], it is necessary to define inclusion and exclusion criteria for
the papers selection. The criteria should identify the primary studies, i.e. the
ones identified during the research, which provide evidence about the research
question. The inclusion criteria defined for this review were:

a) Software product line and domain engineering approaching the design activ-
ity: this criteria adds papers of software product line and domain engineering
approaching the domain design activity in order to analyze their features.

b) Comparison among domain design approaches: papers comparing domain
design approaches were searched in order to aid in this systematic review
separating key aspects and drawbacks. These aspects were evaluated ac-
cording to the personal experience.

c) Approaches treating variability in DSSA: some approaches addressing the
variability in domain design were added to this systematic review for the
evaluation of those practices in the context of a DSSA creation based on
existing set of systems.

As exclusion criteria, we defined the following:

a) Software product line and domain engineering approaches that do not treat
domain design: software product line and domain engineering approaches
that do not address the domain design are not interesting for this survey.
Approaches as FODA [14] that address mainly the requirements phase were
discarded.

b) Approaches for evaluating DSSA’s: even being very important to assure
the DSSA’s quality, approaches for evaluating them were out of the scope
of this systematic review, because evaluating it and adding this step for
a possible new approach for domain design would increase the scope of
this work.

1 www.cin.ufpe.br/∼edsf/sreview/conferences

www.cin.ufpe.br/~edsf/sreview/conferences

Evaluating Domain Design Approaches Using Systematic Review 55

4 Approaches Selection

The approaches selection was performed by five M.Sc. candidates and two Ph.D.
in conjunction with weekly discussions and seminars with the Reuse in Software
Engineering (RiSE2) Lab.

At the end of the data source collection, 11 approaches were identified as
possible choices for further analysis. Among these approaches were 5 books, 2
theses and 16 papers. The criteria was analyzed after a full text reading or just
the title and abstract of those papers for which the content was clearly not
related to the research question in the case of the papers. Books and theses were
scanned in order to analyze if they were related with the criteria.

After the analysis, 10 approaches were selected (detailed in the next section).
The selected approaches analysis were based on 11 papers, 2 theses and, 4 books.

4.1 Approaches Information

In this section, we present a brief description about the selected approaches in
a chronological order.

FORM(1998). The Feature-Oriented Reuse Method (FORM) was developed
in Pohang University of Science and Technology, Korea as an extension to
the Feature-Oriented Domain Analysis (FODA) [18]. Its analysis was based on
paper [13].

FAST (1999). The Family-Oriented Abstraction, Specification and Transla-
tion was developed at Lucent Technologies. It is a software development process
focused on building families of systems. Its analysis was based on [22].

PuLSE (1999). The Product Line Software Engineering (PuLSE) was devel-
oped at Fraunhofer Institute for Experimental Software Engineering (IESE) with
the purpose of enabling the conception and deployment of software product lines
within a large variety of enterprise contexts. Its analysis was based on papers
[11] and [6].

COPA (2000). The Component-Oriented Platform Architecting approach for
Families of Software Intensive Electronic Products (COPA) was developed at
the Philips Research Labs. The specific goal of the COPA approach is to achieve
the best possible fit among business, architecture, process and organization of
systems having the greatest level or reuse as possible. Its analysis was based on
the papers [1], [20] and [18].

SEI’s Framework (2000). The SEI’s framework was developed in the Depart-
ment of Defense at the Software Engineering Institute (SEI) in order to estab-
lish patterns for the Software Product Line practice. Its analysis was based on the
book [9].
2 www.rise.com.br/research

56 E.D.S. Filho et al.

KobrA (2002). Komponentenbasierte Anwendungsentwicklung (KobrA) that
is German for “component-based application development” [18] was developed at
Fraunhofer Institute for Experimental Software Engineering (IESE). Its analysis
was based on the papers [2], [4], [18], and the book [3].

QADA (2002). The Quality-driven Architecture Design and quality Analysis
(QADA) approach was developed at VTT the Technical Research Centre of
Finland. QADA claims to be a quality-driven architecture design approach. Its
analysis was based on the papers [19] and [18].

PLUS (2005). The Product Line UML-based Software Engineering is a RUP
based approach to software product line engineering. Its focus is on representing
variability and product line concerns with UML. Its analysis was based on the
book [12].

DECOM (2006). The DECOM approach was developed at Federal University
of Rio de Janeiro (UFRJ), Brazil, as a Ph.D. thesis. It is an extension and update
of ODYSSEY approach [7], developed at the same place. DECOM proposes
a domain engineering process with domain engineering and component-based
development methods, with the focus on domain design activities. Its analysis
was based on the Ph.D. thesis [7].

RiDE (2007). The RiSE process for Domain Engineering (RiDE) was devel-
oped at Federal University of Pernambuco (UFPE), Brazil, as a Ph.D. thesis. It
is based on the definition of a feature model (FODA) and the main purpose is to
detail activities related with each phase of the domain engineering. Its analysis
was based on the Ph.D. thesis [10].

For a better documentation of the approaches analysis, the available information
about them can be seen in http://www.cin.ufpe.br/∼edsf/work.html.

5 Results

In this section, we show the results of the systematic review, conducted with the
objective ofmapping how complete are domaindesign approaches.After the results
of the SQs, a summary according to the main questions is presented in Table 1.

5.1 Use of Architectural Views

Analyzing the 10 approaches, we could identify that not all of them use architec-
tural views. But approaches that do not use architectural views have different
models for representing the DSSA.

FORM, FAST, KobrA, PuLSE, and DECOM do not mention the use of ar-
chitectural views for describing the DSSA. Instead, they just use models and
activities that will be described in Section 5.5.

The COPA approach defines 5 views: customer view, application view, func-
tional view, conceptual view and realization view. These views can also be divided

http://www.cin.ufpe.br/~edsf/work.html

Evaluating Domain Design Approaches Using Systematic Review 57

Table 1. Summary of Systematic Review Questions of Software Product Line Ap-
proaches

Activities

Apply Adapt Component Architecture Experimented
Architectural existing Development Recovery in Industy

Approaches Views Process Guidelines Guidelines

FORM (1998) X X

FAST (1999) X

PuLSE (1999) X

COPA (2000) X X

SEI (2000) X X X

KobrA (2002) X

QADA (2002) X

PLUS (2005) X X X

DECOM (2006) X

RiDE (2007) X X

in two groups: commercial and technical, the first two views being defined as com-
mercial views, the last two as technical views and the functional view as both
commercial and technical. The customer view focuses on business modeling from
the customer’s viewpoint while the application view describes the applications
that are important to the customer in the product line context. The functional
view captures the system requirements of a customer application. The concep-
tual view includes the architectural concepts of the system and the realization
view describes the realization technologies for building the system [18].

The QADA approach has the architectural representation divided in two
groups: conceptual architecture design and concrete architecture de-
sign. Each group has the same set of views: structural view, behavior view, and
deployment view. Conceptual views represent the architecture in a high level of
abstraction, while concrete views in a more detailed level. The structural views
are represented by components and the relationship among them, behavior views
represent the messages exchanged by components and the responsabilities they
have, and deployment views represent how components are phisically organized,
in terms of hardware and software.

The PLUS approach deals with architectural views in the same way as Ratio-
nal Unified Process (RUP): with the 4+1 model from [16].

The RiDE approach, as well as the SEI’s framework, suggests the use of
architectural views taking avantage of the 4+1 model as well, but they do not
recommend any specific, letting the architect decide which view to use depending
on the project’s needs.

5.2 Activities Adopted for Design

In the approaches analysis, we could observe that all of them define their own
steps to achieve the DSSA. All of them focus on the level of detail for the software

58 E.D.S. Filho et al.

product line developers and have steps for a generic domain, needing just some
customization for the domain change.

In the FORM approach, for each domain, a feature model is specified, with
features from every system defined in the context phase. For the software DSSA,
it has only the steps of defining the subsystem model, process model and module
model. The FAST starts with the family design development, that will be reused
to generate members of the family. The next step is to define traceability among
specifications in Architecture Modeling Language (AML) and templates. The
next step is to define the syntax and semantics of the AML.

The PuLSE approach also treats different contexts by instantiating the ap-
proach details for each specific environment. The first step of the domain design
is to generate generic scenarios, that means architecturally significant scenarios
for the software product line and property related scenarios, focusing on domain-
indepent quality aspects such as couping and cohesion, based on functional and
non-functional requirements, scenarios are sorted according to their architectural
significance, which means that scenarios which hold important variability infor-
mation should be considered first. Based on the sorted scenarios, the architecture
is developed and refined to encompass more scenarios, after that, prototype of
candidate architectures are developed for a better evaluation and it finishes with
the architecture refinement by adding and satisfying another scenarios.

COPA approach is customized according to customer’s needs and work prod-
ucts are derived from the commercial needs. Its first step is the components
identification, that produces the conceptual DSSA by arranging it into compo-
nents and subsystems, and the second, aspect design, that models the functions
that are orthogonal to objects such as fault handling, diagnosis and debugging.
For the SEI’s framework, the practices related with the DSSA are added to an
existing approach in business. It means that practices are dependent of context.
The steps for achieving the DSSA were not evaluated because the framework just
advises about practices but not about which steps should be followed. KobrA is
divided in Komponent3 specification phase, where the external properties of a
Komponent are defined, and the Komponent realization phase that realizes the
Komponent’s specification. Analyzing QADA approach, we could observe that
it has two main steps, the conceptual architecture design, where the conceptual
components are defined, according to the functional and quality requirements,
and concrete architecture design, where the components are specified in a lower
level of abstraction.

In PLUS, activities take in consideration different viewpoints and needs for
the whole SPL. Its framework is as generic as the Unified Process (UP), but has
specific approaches to deal with variability in the context of SPL using UML.
The architecture is designed addressing the main concerns about the DSSA to
be built, such as choosing, using and documenting the architectural patterns
that will satisfy the requirements of the software product line, documenting ra-
tionale and design decisions, and developing component-based architectures and
distributing those components. DECOM approach defines a component creation

3 Komponent is the notation for “KobrA component”.

Evaluating Domain Design Approaches Using Systematic Review 59

step, where components are created based on domain specific features and cat-
egorized in: business components, process components, utile components, and
infrastructure components. After being created components are grouped accord-
ing to messages changed among them and finally the architecture is assembled
using architectural styles and taking quality attributes in consideration.

In RiDE approach, the modules are decomposed as the first step of the domain
design, based on assets produced in domain requirements engineering, such as busi-
ness goals, constraints, domain use case model, feature model, and scenarios. Af-
ter the definition, the modules are refined choosing the architectural drivers that
will be addressed by the architecture, choosing architectural patterns that can be
applied, and allocating systems functionality to modules. The variability is rep-
resented in class diagrams, mapping the feature model with the suggested design
patterns. Components are defined based on the messages changed among them and
the DSSA is represented with the components defined in the previous steps.

5.3 Variability in Domain Design Approaches

Treating variability in software product lines is mandatory, since with variability
many systems can be addressed and the variable aspects of the software in the
domain can be documented.

In this sense, FORM, DECOM, and RiDE capture variability in domain re-
quirements where a feature tree is developed, in FORM, these features are then
associated with subsystems, processes, and modules (or components) regarding
to the models of the domain design step. In DECOM, an extension of the fea-
ture models is used in order to achieve variability with the tracking with other
models like, use case and class diagrams, and in RiDE, variability is represented
with design patterns suggested by the approach with guidelines for each type
of variability in feature model. FAST and KobrA approaches use decision mod-
els to capture and document the family aspects. The decisions are related to
variability in domain.

PuLSE, as in KobrA, the variability is documented textually and taken in to
consideration for each scenario built. COPA approach has specific processes for
product family engineering and application engineering. Generic solutions are
identified in the early stages of domain analysis and variability is represented
along with the features, which are grouped in sets. SEI’s framework suggests
mechanisms such as inheritance, extensions and extension points, parameteriza-
tion, configuration and module for addressing variability.

The QADA approach uses specific relations and notations, such aggregation,
specialization of the UML modeling language for variability captured in require-
ments phase. In PLUS approach, the whole process and artifacts are interveined
by the documentation of variation points, which addresses the variability concern.

5.4 Adaptation of Existing Processes

During the research, we could observe that some approaches try to minimize
the business changes in start producing a software product line and this is done

60 E.D.S. Filho et al.

adapting the existing enterprise process. This is a good approach since it mini-
mizes the companies cost and effort in this process adaptation. Other approaches
have a specific method for developing a software product line requiring a bigger
effort to have this kind of development, these approaches focus on preparing the
core assets to be reused as a preliminary part of the softwares development.

In FORM’s evaluation, we could observe that the feature models are used
based on FODA, for supporting both engineering of reusable domain artifacts
and development applications using these domain artifacts, representing the vari-
ability and commonality in the domain.

FAST, PuLSE, COPA, KobrA, QADA, DECOM, and RiDE define their own
methods and steps not only for the domain design phase, but another phases from
the domain engineering life cycle. Their purpose were not adapting a existing busi-
ness process for achieving the DSSA but being a complete process for this activity.

SEI’s framework is a set of guidelines essentially done to cover the variability
issues in a common process. So its guidelines can be used for the adaptation of
an existing process to achieve the DSSA.

PLUS approach defines a set of models for representing variability in DSSA
based on RUP models. It brings us that existing companies processes based on
RUP models can use PLUS models for the domain design as a way for achieving
the variability across architecture.

5.5 Models for Architecture Documentation

For an effective product line engineering approach, the commonality and vari-
ability information that characterizes the members of a product family must be
integrated into a single coherent description of the product line [5]. In order to
have a good documentation, the set of models that the approaches define are
very important to make development easier.

For the DSSA definition, FORM approach defines three models: the sub-
system model, that defines the overall system structure by grouping functions
into subsystems, the process model that represents the dynamic behavior of
each subsystem (e.g., concurrency within a subsystem), and module models,
where features at all levels of the feature model are used for defining reusable
components.

The FAST approach does not state any specific model to represent the DSSA.
It is based on the development of an Architecture Modeling Language defined
during the product line development process. For PuLSE approach, the qual-
ity and functional scenarios, candidate architecture prototypes, configuration
models, and DSSA descriptions are defined. Quality and functional scenarios
are described as in SEI’s ATAM approach for architecture evaluation [6]. Pro-
totypes can be developed in any language, including the ones different from
the aimed language for developing the products. The configuration model doc-
uments the decisions made during the DSSA development, such as alternative
implementation strategies.

COPA approach documents the complete ABC (architecture business cycle).
The customer view includes customer value drivers, customer business models

Evaluating Domain Design Approaches Using Systematic Review 61

and market models. The application view models entities and behavior of the
product line. The functional view models the commercial decomposition of func-
tion features and options, price performance and dimensioning of the products
planned. Conceptual view models product specific components, platform com-
ponents, aspect-specific models, concurrency models, and deployability models
written in UML.

KobrA defines three models: the structural model that describes classes and
relationships by which a Komponent interacts with its environment, as well as
any internal structure of the Komponent, which is visible at its interface. The
behavioral model describes how a Komponent reacts in response to external
stimuli and, the functional model of a Komponent that describes the externally
visible effects of the operations that are provided by that Komponent, and the
decision models that are used for the system architecture instantiation. These
models are made in the framework engineering phase.

QADA approach has architectural elements and architectural languages for
each of the views described in Section 5.1. For conceptual architectural view,
conceptual structural components divide the system into functional blocks using
UML elements as package diagrams. Its language describes the relation among
these blocks. In conceptual behavioral view the architectural elements are com-
ponents and their relationships. Its language defines these elements in an ordered
sequence of actions, and for the conceptual deployment view elements defined
are deployment nodes that are computing units and deployment units that are
composed of one or more components. Concrete structural, behaviour and de-
ployment views has the same purpose as in the conceptual, but it represents
the components, interactions among them and their allocation in software and
hardware in a higher level of detail.

For DECOM approach, class diagrams are used for expressing the variability
found in identified classes, and component diagrams are used for expressing
the variability and optionality of identified business, process, utile and infra-
structure components. Sequence diagrams are used for identifing the messages
changed among components and this will help to generate the DSSA.

RiDE, SEI’s framework and PLUS are based on RUP for architecture repre-
sentation using the 4 + 1 models for each model defined in this methodology
depending on the need for the models. In RiDE approach, the architecture is rep-
resented with class diagrams defining the classes that are related with the feature
model representing its variability with the suggested design patterns. Classes de-
fined for the feature model are allocated to components, these components are
represented in a component diagram, and each component is configurable to
implement its variability.

5.6 Approaches Key Points and Drawbacks

In this section, we evaluate the key points and drawbacks of the approaches
reviewed based on sub-questions of the question 6.

Approaches Experimentation. As we can see in Table 1, FORM, FAST,
PuLSE, COPA, SEI’s Framework, and KobrA were experimented in industry.

62 E.D.S. Filho et al.

However, in QADA, PLUS, DECOM, and RiDE, we did not find any evidences
that they were experimented in industry. This can be true, because they are the
most recent ones, and are probably in evaluation.

Guidelines for Component Development. With the information provided
by Table 1, in PLUS, DECOM, and RiDE, we could find guidelines for com-
ponent development. In PLUS, component development is based on the depen-
dences between use cases and features. DECOM and RiDE approach takes in
consideration the development of sequence diagrams and the messages changed
by classes for the component definition and development.

Guidelines for Architecture Recovery. No guidelines for architecture recov-
ery were found in this review. This review showed us that approaches are very
well prepared for the development of a DSSA, but they do not take advantage
of existing assets to improve its development.

6 Threats to Validity

The main threats to validity we identified in our review are described next:

Approaches selection: looking for studies from web search engines and key
digital libraries do not assure that all domain design approaches were reviewed.
Possibly, relevant approches were excluded from this systematic review, since
some paper titles do not mention the key words defined for the research (see
Section 3). In order to reduce this possibility, the selection of approaches was also
based on identification of the key journals and conferences in software engineering
in general, in software reuse, and software product lines, with a specilist analysis
for the study’s validation. We also analyzed the referenced works, including
theses and technical report.

Data extraction: the lack of information available by approaches can make
us to omit some relevant data about them. We tried to ensure validity by ana-
lyzing multiple sources of data, i.e. papers, technical reports, white papers and
manuals, relating the similar information. The extracted data were compared
to the research questions and later classified according to the objectives of the
questions.

7 Related Work

Some studies were found in the same line of evaluating the existing software
product line approaches. However, no one is performed through a systematic
review.

Matinlassi [18] compared the design approaches KobrA, COPA, QADA, FAST
and FORM. In her evaluation, she brings a brief description about the processes,
and their related domains using a framework called NIMSAD. With this frame-
work, she used four categories in the evaluation: context, user, contents and
validation. Each category has its own questions to be addressed.

Evaluating Domain Design Approaches Using Systematic Review 63

Similar to our work, Matinlassi presented the main characteristics of the de-
scribed approaches. However, she concluded that they do not seem to compete
with each other, because each of them has a special goal or ideology. Different
from our work she does not bring the evaluation of some approaches such as
PuLSE and since it was written in 2004, it does not bring recently developed
approaches, such as RiDE, PLUS, and DECOM.

The AMPLE project [17] performed a survey on the State of the art in Prod-
uct Line Architecture Design with a very detailed definitions about concepts
from software product lines to software architecture, describing just how they
represent the DSSA, different from our work, that shows other points of view
from the Domain Design approaches. AMPLE project presented the approaches
grouping them by their main characteristics. It describes approaches such as
FODA, emphasizing the feature orientation characteristic, cites FAST, PuLSE,
and KobrA, but it does not cite approaches such as COPA, QADA, DECOM,
RiDE.

Moreover, it is important to highlight that our work performed this evaluation
using a formal and defined approach. Thus, it can be more repeatable, e.g., for
other researchers and research groups. In addiction, issues not defined in this
review can be improved based on this version, since all the process is well defined
and documented.

8 Systematic Review Summary

Analyzing activities, guidelines, and views, we could observe a set of good prac-
tices adopted by domain design approaches. The separation of architecture in
views is considered a good practice since many stakeholders can see how the
domain design will be implemented. The 4+1 model is easyly adaptable for soft-
ware product lines that are RUP compliant since they must only extend the
concept of variability for achieving the DSSA description. Other views described
in this study are more specific according to the customer, the domain, and the
business.

The activities defined by the approaches were very complex for analyzing,
since each of them deals with different aspects from the DSSA perspective. The
most interesting activities are related with the static modeling of the domain
architecture, defining the variability among several levels of abstraction, such as
components, classes, etc. In this review, we missed some activities for treating
the quality attributes variability inside a DSSA, since it is a very important issue
concerning the architecture definition. The addition of quality attributes in the
DSSA can make it change in several components. An important activity verified
was the component definition very well described in [10]. KobrA and FORM still
presents suggestions on how to define components.

In the same way as in the architecture view/viewpoints, the models for describ-
ing a DSSA are very easier to understand when following the models described
by 4+1 model. In some approaches, we could observe just the mention to use it,
but not how to treat variability inside them. KobrA approach uses stereotypes

64 E.D.S. Filho et al.

from the UML language to define which assets from the domain are variable and
which ones are common.Feature models are considered good models for repre-
sent variability inside a domain and to select which assets are going to be in a
product from the features selection.

9 Concluding Remarks and Future Work

In this review, we analyzed and compared the domain design approaches, and
discussed the strengths and weakness found in this context. The effort and qual-
ity data gathered by our review present interesting results that can be used as a
documented important background in domain design development. The informa-
tion listed in this paper provides valuable data for other researchers investigating
domain design in academic or industrial settings. Futhermore, the common key
points reviewed in approaches, can show what are the basic activities for the
adoption of a domain design approach. Moreover, this review aids reseachers
in collecting the key points each approach address in order to have a tailored
approach.

The main problem addressed by this review, was the need for companies
to develop a DSSA taking advantage of existing assets. As we could see, few
approaches have guidelines available for the component development and no ap-
proaches have guidelines for achieving the DSSA from the assets available in
software companies. This may lead us to develop an own approach addressing
these issues in order to decrease the effort in the software product line adop-
tion for companies that started development without a software product line
approach. As future work, we are calibrating our study and starting the devel-
opment of a full approach for domain design. This approach is strongly influenced
by this paper and our industrial experience in the topic.

Acknowledgements

This work is sponsored by Brazilian Agency (CNPq process number: 475743/
2007-5).

References

[1] America, P., Obbink, H., van Ommering, R., van der Linden, F.: Copam: A
component-oriented platform architecting method family for product family en-
gineering (2000)

[2] Atkinson, C.: Component-based product line development: The kobrA approach,
pp. 289–309 (2000)

[3] Atkinson, C.: Component-based Product Line Engineering with UML. Addison-
Wesley, Reading (2002)

[4] Atkinson, C., Bayer, J., Laitenberger, O., Zettel, J.: Component-based software
engineering: The kobra approach (2000)

[5] Atkinson, C., Muthig, D.: Model-driven product line architecture (2002)

Evaluating Domain Design Approaches Using Systematic Review 65

[6] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T.,
DeBaud, J.-M.: Pulse: A methodology to develop software product lines (1999)

[7] Blois, A.P.T.B.: A Component-based Architectural Design Approach in the Do-
main Engineering Context. PhD thesis, UFRJ (2006)

[8] Bosch, J.: Evolution and composition of reusable assets in product-line architec-
tures: A case study (1999)

[9] Clements, P.: Software Product Lines - SEI Framework (2000)
[10] de Almeida, E.S.: RiDE - RiSE Domain Engineering Process. PhD thesis (2007)
[11] DeBaud, J.-M., Flege, O., Knauber, P.: Pulse-dssa a method for the development

of software reference architectures (1998)
[12] Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison Wesley Professional, Reading
(2004)

[13] Kang: Form: A feature-oriented reuse method with domain-specific reference ar-
chitectures (1998)

[14] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
oriented domain analysis (foda) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute (November 1990)

[15] Kitchenham, B.: Procedures for performing systematic reviews (2004)
[16] Kruchten, P.: The Rational Unified Process An Introduction. Addison-Wesley,

Reading (2000)
[17] Loughran, N., Sánchez, P., Gámez, N., Garcia, A., Fuentes, L., Christa, S.,

Kovacevic, J.: Survey on state-of-the-art in product line architecture design. Tech-
nical report

[18] Matinlassi, M.: Comparison of software product line architecture design methods:
Copa, fast, form, kobra and qada (2004)

[19] Matinlassi, M., Niemela, E., Dobrica, L.: Quality-driven architecture design and
quality analysis method, a revolutionary initiation approach to a product line
architecture (2002)

[20] Obbink, H., Mı̈ller, J., America, P., van Ommering, R.: Copa a component-
oriented platform architecting method for families of software-intensive electronic
products (2000)

[21] Pohl, K., Backle, G., van der Linden, F.: Software Product Line Engineering
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

[22] Weiss, D.: Software product-line engineering: a family-based software development
process. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1999)

Characterizing Relations between Architectural Views

Nelis Boucké1, Danny Weyns1, Rich Hilliard2,
Tom Holvoet1, and Alexander Helleboogh1

1 DistriNet Labs, K.U. Leuven, Belgium
{nelis.boucke,danny.weyns,tom.holvoet,
alexander.helleboogh}@cs.kuleuven.be

2 Consulting software systems architect
r.hilliard@computer.org

Abstract. It is commonly agreed that an architectural description (AD) consists
of multiple views. Each view describes the architecture from the perspective of
particular stakeholder concerns. Although views are constructed separately, they
are related as they describe the same system.

A thorough study of the literature reveals that research on relations between
views is fragmented and that a comprehensive study is hampered by an absence of
common terminology. This has become apparent in the discussion on inter-view
relational concepts in the revision of IEEE 1471 as ISO/IEC 42010 (Systems and
Software Engineering — Architectural Description).

This paper puts forward a framework that employs a consistent terminology
to characterize relations between views. The framework sheds light on the usage,
scope and mechanisms for relations, and is illustrated using several representa-
tive approaches from the literature. We conclude with a reflection on whether the
revision of ISO 42010 aligns with our findings.

Keywords: architectural views, view relations, viewpoint, architectural descrip-
tions, integration of views, consistency, models, IEEE 1471, ISO/IEC 42010.

1 Introduction

The architecture of a software system defines its essential structures, which comprise
software elements, the externally visible properties of those elements, the relationships
between them [3] and with their environment [21]. It is commonly agreed that an ar-
chitectural description (AD) consists of multiple views. Views are used to achieve sep-
aration of concerns where each view describes the architecture from the perspective of
related stakeholder concerns [21]. Although views can be constructed separately, they
must be related in that they describe the same system.

Relying on implicit relations, e.g. relating elements having the same name and type,
might be sufficient for simple architectures but is insufficient for more complex systems.
An important part of the architect’s job is to understand, describe and reason about how
the different views relate to each other [8,40]. In this paper, we explicitly focus on the
relations between architectural views; not on relations between elements within views.

Relations are essential for establishing consistency and for maintaining that consis-
tency over time. Software architects need relations to manage the multitude of views.
Developers need relations for an integrated picture of the architecture that is a prereq-
uisite for detailed design and implementation. Other stakeholders need to see how their

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 66–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Characterizing Relations between Architectural Views 67

concerns are realized and how these realizations relate to concerns of other stakehold-
ers. Finally, relations provide the basis for automation in architectural tools of con-
sistency checking, and integration or synchronization of multiple architectural views
during design.

Problem Statement. In the architecture community, there is a common understanding
of what an architectural view is. There are several seminal works on views, including
Perry and Wolf [36] and Kruchten’s 4+1 view model [26]. More recently, multiple views
form the basis for approaches such as Documenting Software Architectures [8] and
Software Systems Architecture [40]. Also, the concepts of architectural description and
view have been standardized by ANSI, IEEE, ISO and IEC.1

Such common understanding however is lacking for relations between views. This
lack of consensus became apparent in the recent discussions on the incorporation of
relations between views in the ongoing revision of ISO 42010. A thorough study of the
literature reveals that research on relations between views is fragmented and hampered
by an absence of common terminology. Authors typically compare to approaches with
similar purpose (e.g. automatic consistency checks). However, they tend to neglect other
relations with similar technical characteristics but devised for another purpose (e.g.
enforcing design decisions).

The fragmentation in research also becomes apparent through the myriad of terms
in use for related or overlapping concepts. A sample of terms from recent research
in this area illustrates the point: [30] uses constraints, rules, standard constraints, ex-
tensions constraints, integration constraints and custom constraints; [18] uses design
constraints, invariants and heuristics; [28] uses rule and specializes rules in constraints
and obligations; [14] additionally uses policy constraints; [4] uses viewpoint correspon-
dences; [8] uses relations and mapping; [12] uses refinement and overlap relations,
relationships and consistency rules that apply to the relations; [2] uses relations and
transformations for the same thing; [38] uses boolean rule, general design rule, con-
straints logic, dependency links, links, design rule and transformation rule; [9] uses
links, relations, rules, correspondences and correspondence rules; [43] uses traceabil-
ity links, dependency links, dependency relations, relations, trace relation; etc. This
makes it difficult to characterize and compare approaches for describing relations be-
tween views.

Contributions. The revision of ISO 42010 provides an opportunity to offer better
guidance to architects for capturing relations between views within an architectural de-
scription. This paper contributes a proposed framework that structures approaches for
explicit relations between views providing a common ground for relations. The frame-
work is based on a thorough study of the literature and on our experience. The goal is
to take a step to disentangle and bring clarification to the work on relations between
views. The framework sheds light on the usage, scope and underlying mechanism. Ap-
plication of the framework is illustrated with several representative approaches from the

1 The abbreviation ISO 42010 is used for the published version of ISO/IEC 42010:2007, Sys-
tem and Software Engineering — Architectural Description [24]. ISO 42010 is identical in
content to ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description
of Software-Intensive Systems [21], and is currently undergoing revision. The abbreviation
42010 WD2 is used for the current working draft of this revision [22].

68 N. Boucké et al.

literature. Based on this, we reflect on whether view relations in the ISO 42010 working
draft aligns with the findings in the literature.

Overview. To avoid confusion on terminology issues, section 2 introduces the basic
architectural terminology used in this paper. Section 3 proposes the framework to char-
acterize relations between views, and illustrates its use with representative approaches
from the literature. Section 4 reflects on the proposal for view correspondences in
42010 WD2 with respect to the proposed framework. Finally, we conclude in section 5.

2 Basic Architectural Concepts

This section introduces the basic architectural concepts and terminology that we will
use in the remainder of the paper. There are several known definitions of architec-
ture and architectural views in the literature, the SEI [3,8], Siemens [20], ISO 42010
or RM-ODP [23]. We adopt the conceptual model of ISO 42010, to serve as a con-
sistent set of basic terminology. This does not mean that our scope is limited to the
standard; we studied a broad range of approaches in the literature.2 ISO 42010 has
two parts. The first part is a conceptual model for architectural descriptions. The con-
ceptual model introduces and interrelates such concepts as architectural description,
concern, viewpoint, view and model. The second part puts forward required content for
any ISO 42010-conformant architectural description, independent of the specific archi-
tectural languages in use. Here, we only use the conceptual model.

Figure 1 shows a portion of the ISO 42010 conceptual model relevant for this paper.
An architectural description (AD) is “a collection of products to document a specific
architecture”. An AD is organized into one or more architectural views, where a view
is defined as “a representation of a whole system from the perspective of a related set of
concerns”. Each view is constructed according to an architectural viewpoint, defined as
“the conventions for constructing and using a view; a pattern or template from which to
develop individual views by establishing the purposes and audience for a view and the
techniques for its creation and analysis”.

One of ISO 42010’s contributions was to explicitly distinguish between view
and viewpoint, in this sense: A viewpoint is a way of looking at an architecture; the
view is the result of looking at a specific system’s architecture in this way.3 First-class
viewpoints first appear in Ross’ Structured Analysis [39] and are elaborated upon by

2 In 2007, IEEE 1471 was adopted by ISO as ISO 42010. At present, IEEE and ISO are jointly
revising the standard.

3 Not every architectural approach makes an explicit distinction between view and viewpoint.
The term viewpoint appears in ISO RM-ODP [23], in a very similar fashion; although
viewpoint specification is employed where IEEE 1471 uses view. In RM-ODP a viewpoint
specification is defined as “the application of a viewpoint to a specific system”. The book
Documenting Software Architectures (DSA) [8] introduces viewtypes as “a viewtype defines
the element types and relation types used to describe the architecture of a software system
from a particular perspective.” DSA further proposes there are three viewtypes: the module
viewtype, the component-and-connector viewtype, and the allocation viewtype. In the present
framework, these could be considered a three-way classification of viewpoints, in terms of
their representational mechanisms (element and relation types).

Characterizing Relations between Architectural Views 69

Fig. 1. A portion of the ISO 42010 conceptual model

Finklestein et al. [16]. In ISO 42010, viewpoints are intended to provide a represen-
tational approach for addressing specific architectural concerns: “those interests which
pertain to the system’s development, its operation or any other aspects that are critical
or otherwise important to one or more stakeholders”. A system stakeholder is any “in-
dividual, team, or organization (or classes thereof) with interests in, or concerns relative
to, a system”.4 Each architectural view is composed of one or more architectural mod-
els. Each model contains a concrete description of architectural elements and relations,
and obeys the conventions of the governing viewpoint with respect to the viewpoint
language(s) and model type(s) employed therein. When a view is composed of multiple
models, relations can arise between models within a view as well as between views.

The authors of ISO 42010 recognized the issue of view consistency, but did not
specify a mechanism for enforcing that consistency except to require the recording any
known inconsistencies. We return to the current proposal for introducing relations into
the ISO 42010 working draft below section 4.

3 A Framework for Characterizing Relations between Views

Starting from a thorough study of literature and our experiences, we have identified
several criteria to characterize relations between views. Each of the criteria emphasizes
a particular aspect of view relations. Together, the criteria make up a framework that

4 The standard uses concern in the sense of E. Dijkstra’s separation of concerns.

70 N. Boucké et al.

Fig. 2. Overview of the criteria for the framework in three orthogonal dimensions

allows structuring and comparing approaches for relations between views. Figure 2
shows an overview of the criteria. The criteria are grouped along three dimensions:
Usage, Scope, and Mechanism.

In this section, we describe the criteria and discuss representative examples from the
literature. It is not our ambition to be exhaustive in all possible criteria or references,
but rather to offer an initial impetus towards defining a framework for characterizing
relations between views. At the end of this section, we discuss possible extensions of
the framework.

3.1 Usage

We have identified four main use cases for relations between views: (1) consistency
checking; (2) composition; (3) tracing; and (4) model transformation. There is no one-
to-one mapping between particular types of relations and their use; relations can be used
for different purposes. Some of the use cases are not goals in themselves but can serve
a further purpose. For example, tracing is typically used for backtracking of decisions
and to allow easier changes to the architecture.

Consistency Checking. Consistency checking is about determining whether the infor-
mation in several views does not conflict. We discuss three example uses of relations
between views for consistency checking: general-purpose consistency checking, design
constraint checking, and consistency checking of service compositions.

Nentwich et al. [30] put forward a general-purpose approach for automatic consis-
tency checking of heterogenous and distributed software engineering documents. The
approach uses constraints underpinned by a first-order logic specification. The asso-
ciated xlinkit tool generates “inconsistency relations” between elements. A software
architect can use the inconsistency relations to identify the elements that cause inconsis-
tencies between several views,5 and possibly alter particular elements to resolve incon-
sistencies. xlinkit is not limited to finding inconsistencies between architectural views.
The approach has also been used for the identification of inconsistencies in distributed
product catalogs [29], requirement specifications [31], UML diagrams [29], web service
compositions [14].

Garlan et al. [18] use the Armani language to express design constraints in Acme and
the associated AcmeStudio tool. Acme is a general-purpose, component and connector
(C&C)-based ADL with particular support for architectural styles. Design constraints

5 The authors do not distinguish between viewpoints and views. A view as defined in section 2
is called the viewpoint specification in their approach.

Characterizing Relations between Architectural Views 71

can be defined for architectural styles that impose restrictions on how an architectural
design is permitted to evolve over time. For example, for a layered architectural style,
the constraints will describe that a higher layer is allowed to use a lower layer but not
the other way around.

Dijkman and Dumas [11] propose an approach for consistency checking in service
composition between four interrelated views.5 namely interface behavior, provider be-
havior, choreography, and orchestration. The views are formalized using Petri nets. By
specifying relations between the views, the approach enables static verification of a web
service composition.

Other examples of consistency checking are described by Boiten et al. [4] and
Dijkman et al. [12] in the context of RM-ODP [23], Fradet et al. [17] use graphs and
constraint expressions on these graphs, and Radjenovic and Paige [38] developed an
ADL and consistency checking in the context of dependable systems. Radjenovic and
Paige emphasize that to reach a strong sense of consistency between views, the number
and complexity of the constraints increases significantly.

Other approaches deal with this issue of consistency in ADs without first-class re-
lations. The ArchStudio tool for xADL [10] supports plug-ins to analyze an AD. The
plug-ins can be used for automatic consistency checking over views. In this case, rela-
tions are programmed in the component. In Software Systems Architecture [40], Rozan-
ski and Woods provide an extensive checklist of possible relations between different
types of views. The list allows software architects to check whether an AD is consis-
tent; however, the relations between views are described only informally.

Composition. Composition of views (sometimes also referred to “merging” or “inte-
gration” of views) allows the integration of information from several views. Composed
views are useful to get a unified perspective, to understand the interactions between
elements from different views, and to perform various types of analysis.

In his doctoral thesis, Egyed [15] presents a framework for integrating multiple het-
erogenous views. This framework exists of a set of integration activities, including the
identification and cross-referencing of related model elements that describe overlap-
ping and thus redundant pieces of information (called mapping). These relations are
then used during the differentiation and transformation activities for integrating views
with each other. The integrated views serve as a basis for several types of analysis, such
as checking consistency.

Boucké et al. [6] introduce three types of relations (unification, refinement and com-
position) between structural views and demonstrate how these relations allow composi-
tion of structural views. Following the ‘Having divided to conquer, we must reunite to
rule’ philosophy [25], the authors state that views can be used to describe concerns, but
that relations and the associated composition are essential to bring the views together.
Tool-supported composition allows one to easily generate overlays to understand and
reason about the integration of several architectural views. The authors have integrated
the relations in xADL and the ArchStudio tool suite [5].

Most composition approaches do not distinguish relations from compositions but
program the relations directly in a composition algorithm or in composition opera-
tors. Abi-Antoun et al. [1] describe an algorithm and associated tool for differentiating
and merging C&C views. The authors argue that architects often face the problem of

72 N. Boucké et al.

reconciling different versions of architectural models, e.g. by using specific informa-
tion from two versions to produce a new version that includes changes from both ear-
lier versions. Sabetzadeh et al. [41] envision the use of explicit relations for merging
views. Giese and Vilbig [19] present an approach to compose the behavior of several
C&C models. The authors mention that views are related, but relations are not first
class—instead programmed within the composition algorithm.

Tracing. Tekinerdoğan et al. [43] document explicit trace relations between architec-
tural concerns, the architectural elements that address the concerns, and between archi-
tectural elements in general. In case the architectural elements related to a particular
concern that are spread across different architectural views, the proposed trace relations
span multiple architectural views. With respect to evolution of the software, one can fol-
low the trace links to update and synchronize architectural views, keeping the software
architecture consistent.

Model Transformation. A model transformation takes as input a model conforming
to a given metamodel and produces as output another model conforming to a given
metamodel. Model transformation is central to the domain of model driven architecture
(MDA) [32]. We discuss two approaches using relations in the context of MDA: an
approach using a refinement relation and another approach using relations for automatic
transformation.6

Architectural stratification proposed by Atkinson and Kühne [2] combines the
strength of separation of concerns and aspect-orientation with component-based frame-
works and model-driven architecture. The goal of architectural stratification is to relate
different architectural strata7 so that they best represent a system’s crosscutting con-
cerns. Each stratum represents a software architecture on a certain level of abstraction.
The authors use stepwise refinement to relate the strata. In each step, a refinement trans-
formation is applied that refines connectors introducing a particular concern. Relations
are thus defined as refinement transformations.

Cordero and Salavert [9] use relations on the metamodel level with the goal of auto-
mated transformation of architectural models. Example relations are: ‘each module is
related to a component’ and ‘each uses relation between modules to a connector’. The
combination between the module view and the relations on the metamodel level allows
one to automatically generate a component and connector view. The approach proposed
by Dijkman et al. [13] is similar, but focuses on the RM-ODP views.

Recently, a standard for model transformation has been defined by the Object Man-
agement Group, the Meta Object Facility Query/View/Transformation Specification
(QVT) [34]. QVT advocates explicit specification of relations before performing trans-
formations. QVT provides a conceptual model and basic architecture for model-driven
transformation tools. Because the standard is very recent, efforts are still on the way to
conform approaches and tools to the QVT model.

6 Alternatively model transformations could also be considered as a mechanism, where rela-
tions are implemented by transformations between models. We placed it under usage, as model
transformations typically also embodies a process, and it is in this model transformation pro-
cess that relations are used.

7 An architectural stratum is a kind of architectural model as defined in section 2.

Characterizing Relations between Architectural Views 73

3.2 Scope

Scope refers to the extent or range of view relations. From the literature study, we
identified four criteria for the scope of a relation: (1) intra vs. inter model type; (2) level
of detail; (3) metamodel vs. model; and (4) horizontal vs. vertical.

Intra vs. Inter Model Type. Intra model type relations are relations between the same
type of models. An example is a relation between two C&C models. Inter model type
relations are relations that involve models of different types. For example, relations
between a C&C model and a statechart model.

Several approaches we discussed in previous sections define relations between C&C
models only. Examples are Garlan et al. [18], Atkinson and Kühne [2], and Boucké
et al. [6]. Dashofy et al. [10] support inter model relations, in particular relations be-
tween types, structural elements, and component instances. xlinkit constraints [30] can
be defined on any XML document, and as such also supports inter model relations.

Level of Detail. Relations can be described between complete views, between models,
and between architectural elements inside views.

Clements et al. [8] use sibling and child relations to relate architectural models.8 Sib-
ling models document different parts of the same system. These models form a mosaic
of the whole view, as if each partial view were a photograph taken by a camera that
panned and tilted across the entire view. Child models document the same part of the
system but in greater details. This is a coarse-grained kind of refinement. Sibling and
parent/child relations are specified at the level of complete models; they do not allow
specifying details about which particular architectural elements are related.

Architectural unification proposed by Melton and Garlan [27] supports fine grained
specification of relations, up to the level of component interfaces and properties that are
associated with the components.

Horizontal vs. Vertical Relations. The term horizontal is used for relations between
views at the same level of abstraction. Vertical relations are either relations between
views at different levels of abstraction (such as refinements) or relations with other rep-
resentations (such as requirements, detailed design or even implementation). The terms
intra phase and inter phase are also used in this context, for horizontal and vertical,
respectively.

The approach to architectural stratification [2] is a good example of the use of verti-
cal relations. The strata correspond to models at different levels of abstraction and are
step-by-step refined via transformation. Both Nentwich et al. [30] and Radjenovic and
Paige [38] propose approaches with explicit support for both horizontal and vertical re-
lations. The latter propose transformation rules to capture relations between subsequent
development stages. Muskens et al. [28] is a language-neutral approach that addresses
intra and inter phase view relations.

Most other approaches do not define an explicit process to use relations in a vertical
way. For example, Armani constraint relations are typically used to specify invariants

8 The authors use the term ‘view packets’; in the terminology of section 2, these can be considred
architectural models.

74 N. Boucké et al.

over several models at one level. However, it is possible to define a process on top of
Acme and Armani that uses constraints to support things like refinement.

Metamodel vs. Model. A metamodel is an explicit model of the constructs and rules
to build specific models within a domain of interest. In the terminology of section 2,
the metamodel refers to the part of the viewpoint language that defines an individual
model type. View relations may be stated with reference to a metamodel or between
metamodels.

A well-known example of metamodel relations are the constraints in the superstruc-
ture of the UML 2.0 definition [33]. The superstructure defines the language elements
of UML 2.0 models and the constraints on how those language elements can be used
within diagrams as well as across multiple related models.

Cordero and Salavert [9] require that each module is related with one component,
and that each usage association is related with one connector. This enables automatic
transformations between the models (section 3.1).

xlinkit constraints include expressions that reference specific points in an XML docu-
ment [30]. Expressions can refer to elements at the model level as well as the metamodel
level.

3.3 Mechanism

Support for relations between views requires constructs in the AD to represent those
relations. We have identified three classes of mechanisms from the literature to describe
relations between views, namely: (1) direct references; (2) tuples; and (3) expression
languages.

Direct References. Elements from one view can refer directly to elements of another
view. In this case, the description of the relations between architectural elements of
different views is mingled with the view descriptions.

Dashofy et al. [10] use direct references between the architectural views of xADL.
xADL allows several views, including a view specifying component types (types view),
views showing the structure of the system by connecting component types (structural
view) and views showing component instances (instance view). Components in a
structural view can refer to their types. Component instances can refer to the structural
components they adhere to and instances can refer to an internal structure (refinement)
described in a structural view.

AADL [42] uses packages to structure architectural documentation. Packages group
architectural elements (component types and instances) into logical blocks, so that there
is a clear connection between the concepts of package and architectural view. The re-
lations between the packages are directly described in the packages; i.e. a component
instance can directly refer a component type in another package.

Tuples. In mathematics, a relation over sets is defined as a subset of the Cartesian
product of the sets. Elements in the relational set are called tuples. Relations modelled
as tuples are typically complex in the context of ADs. Architectural views typically
contain several architectural models, each model defining several types of elements

Characterizing Relations between Architectural Views 75

with possibly complex internal details. This may require one to annotate the tuple with
more details of how the elements are related.

Documenting Software Architecture [8] introduces a ‘mapping table’ to describe the
relations between views, as a part of the information “beyond” the views. Mapping
tables define a set of tuples of elements from different views (one-to-many, many-to-
many, many-to-one). Each table entry is annotated with a textual description to indicate
whether the correspondence is partial and to provide additional details of the relation
(such as corresponding interfaces). Tables can be used for any relation based on tuples.

Boiten et al. [4] also define relations between elements in a table, and annotate each
entry with the type and the level of detail of the relation. The authors define relations be-
tween two RM-ODP Engineering views, and between the Engineering view and Com-
putation view. Relations have a formal underpinning in ObjectZ. The details of the
relations sometimes contain expressions as defined in the next section.

Expression Language. In general, an expression in mathematics is a combination of
names and values, operators, grouping symbols (such as brackets), and possibly vari-
ables (free and bound) arranged in a meaningful way. Expressions containing variables
may use quantifiers (such as ∀ and ∃). An expression language defines which expres-
sions are well-formed, and therefore can be used and meaningfully interpreted. In the
context of ADs, the expressions impose constraints or rules over (sets of) architectural
elements. The complexity of the expression language may vary widely, depending on
factors such as the formal system (e.g. first-order logic) on which it is based, the under-
lying viewpoint languages being related, etc.

The previously mentioned xlinkit tool [30] for automatic consistency checking be-
tween architectural views uses constraints. The tool processes XML documents, using a
formal underpinning based on an extension of first-order logic. It is possible to describe
things such as:

∀c ∈ ‘components’ (∃m ∈ ‘module’ (c.modulename == module.name))

The expressions ‘components’ and ‘module’ are XPath [44] expressions that select the
sets of elements involved in the relation as a tree path in the XML document.

Muskens et al. [28] introduce a general approach for detecting inconsistencies be-
tween different views based on relational partition algebra. Its expression language
includes named relations and operations such as inclusion, composition, intersection,
union, inverse and transitive closure on those relations, but is quantifier-free. The ap-
proach introduces the interesting notions of prevailing vs subordinate views, that can
be used in horizontal or vertical view relations. The distinction is used, for example,
to report violations in the subordinate view, taking the content of the prevailing view
as fixed. An example is a constraint between a message sequence diagram and a class
diagram that requires that the dependencies between classes implied by the message se-
quence diagram are present in the class diagram. Checking this constraint is not trivial,
since inheritance must be taken into account:

((CALLER;CALLEE−1) ↑ TY PE) ⊆ (DEPENDENCY ↓ INHERITANCE∗)

This rule states that all calls between caller and callee objects, lifted (↑) to the types
(leading to dependencies between the types of these objects), must be a subset of the

76 N. Boucké et al.

dependency set of the class diagram, lowered (↓) to inheritance (taking subclasses into
account). The upwards arrow and downwards arrow are algebraic functions for respec-
tively lifting or lowering the level of abstraction.

3.4 Discussion

Starting from a thorough study of the literature and our experience, we have proposed
a framework for analyzing approaches to relations between views in three dimensions:
usage, scope and mechanism. The illustrations from the literature provide a first indi-
cation of its usefulness, but the practical value of the framework for software architects
remains to be proven. Although we believe that the framework adequately captures
the existing work on relations between views, we do not claim that the framework is
complete. One may discover additional use cases, and/or refine or extend the current
dimensions.

An interesting criterion to add could be the way relations are formalized, and what
underlying mechanism is used to support those relations. The nature of the formal-
ization has implications on what analyses can be performed and what outcomes or
results can be generated from those analyses (e.g. proofs of consistency, counterex-
amples, etc.). The underlying mechanism supporting relations can vary widely. Some
approaches use first-order logic and a theorem prover to search for inconsistencies.
Some establish consistency of two representations by formalizing them in ObjectZ and
finding a common refinement.

4 Reflection on Relations between Views in ISO 42010

The revision of ISO 42010 provides an opportunity to capture common concepts and
terminology in the area of views and relations between views. We first explain the pro-
posal for relations in the current working draft of ISO 42010 (42010 WD2). Next, we
compare the 42010 WD2 proposal with our findings about the literature, embodied in
the framework outlined in the previous section.

4.1 Relations between Views in 42010 WD2

The working draft proposes a new concept: view correspondence (VC). A VC records a
relation between two architectural views to capture: a consistency relation, a traceability
relation, a constraint or obligation of one view upon another. Mathematically, a VC is
a binary relation. The intent is that an AD might include several VCs to express one or
more relations among its views.

Example: Consider two views of a system, S, a hardware view, HW (S), and a soft-
ware component view, SC(S). If SC(S) includes software components, e1, . . . e4,
and HW (S) includes hardware platforms, p1, . . . p4, a view correspondence between
HW (S) and SC(S), specifying which components execute on which platforms,
might be:

ExecutesOn = {(c1, p1), (c1, p4), (c2, p2), (c2, p3), (c3, p3), (c4, p4)}

Characterizing Relations between Architectural Views 77

In the context of the framework, this is a tuple-based specification between different
types of models (inter model type). The level of detail is architectural elements: each
item in the relation is a complete component or platform. ExecutesOn describes a
horizontal relation between two concrete models.

In addition to VCs, 42010 WD2 introduces viewpoint correspondence rules (VCRs).
A VCR expresses a required relation between two architectural viewpoints and is re-
alized by VCs on views resulting from the application of those viewpoints within
an AD.

Example: Every software component, ci, as defined by a software component viewpoint
applied to system S, SC(S), must execute on one or more platforms, pj , as defined by
a hardware viewpoint applied to that same system S, HW (S).

ExecuteOnRule = ∀ci ∈ SC(S) : ∃pa ∈ HW (S) : (ci, pa) ∈ ExecutesOn

In the context of the framework, this is an expression with quantifiers in an expression
language between different types of models (inter model type). The level of detail is
architectural view elements: each variable is a complete component or platform. The
rule describes a horizontal relation between two concrete models.
A VCR imposes the following requirements on VCs (in 42010 WD2):

– For each VCR that applies to an AD, there shall be a VC identified.
– A VCR holds in an AD if its associated VC can be shown to satisfy the rule.
– A VCR is violated in an AD if its associated VC can be shown not to satisfy the

rule.

4.2 Comparison to Framework

Since 42010 WD2 is still a working draft, the effectiveness of the view correspondence
proposal remains to be proven. In this section we compare the proposal with our findings
in the literature, embodied in the framework of section 3. The discussion is structured
according to the criteria of the framework.

Usage. 42010 WD2 contains an open list of possible uses, but stays neutral to what
purpose relations are used, which is consistent with the method-neutral stance of the
standard. However, a number of limitations which we have identified in the context
of scope may imply restrictions on the possible use of relations. We describe these
limitations next.

Scope: Model vs. Metamodel. There is a similarity between model and metamodel on
the one hand and the concepts of VC and VCR on the other hand.
A VC is a relation between two views, often expressed as a relation at the model
level. The similarity between a VCR and a metamodel relation is less obvious.
Metamodels (or model types) are part of the viewpoint language and as such not
explicitly represented in ISO 42010. A VCR is defined between viewpoints, ex-
pressed as a relation between viewpoint languages. From this point of view, a VCR
can be considered as a relation at the metamodel level.

Notice that VCR and VC are tightly coupled concepts. Such coupling is typi-
cally less explicit between metamodel relations and model relations in the literature.

78 N. Boucké et al.

Scope: Inter vs. Intra. The use of inter vs. intra model type relations is less clear in
42010 WD2. In ISO 42010 a view is a representation of the whole system with
respect to some concerns. Intra model type relations would be part of the same
(viewpoint) language, and would therefore typically be models within the same
view. Inter model type relations would be part of different (viewpoint) languages,
which may or may not be models in the same view.
This contrasts with our observation of the literature: intra model relations are typi-
cally not limited to models that are in a single view. For example, it is quite common
to have multiple C&C models in different architectural views.

Scope: Level of detail. VCs and VCRs are not restricted to a particular level of detail,
and as such cover the different levels of detail of relations that we have seen in the
literature.

Scope: Horizontal vs. Vertical. 42010 WD2 does not state anything about horizontal
and vertical relations. The concepts of the standard can be applied in a horizontal
or vertical manner.

Mechanism. A standard should be mechanism-neutral. 42010 WD2 does not make
explicit statements about the mechanism to be used for view correspondences or
viewpoint correspondence rules.

We give a side remark on the term “rule” in VCR, which may be confusing. The
idea is that each VCR imposes an obligation on views that must be demonstrated
by a VC. The term rule is often used for a specific mechanism to specify relations,
suggesting the use of a mathematical expression in the sense of section 3.1. A VCR
can just as well be represented as a direct reference or a tuple between language
elements.

We have two other small remarks on the terminology. Firstly, the term ‘correspon-
dence’ is used in the context of RM-ODP, but outside this scope the more neutral term
‘relation’ seems to be used more often. Secondly, the term viewpoint correspondence
rule could lead to confusion, since the obligation is imposed on a view. View correspon-
dence rule seems closer to the intent of the proposal.

In summary, the 42010 WD2 proposal largely aligns with our observations of the
literature. Yet, there is some unclarity with respect to: (1) the advice that intra model
relations are typically within a single view; (2) the role of model types; and (3) the
terminology of view correspondences and viewpoint correspondence rules. It is hoped
these can be clarified upon in future revision drafts.

5 Conclusion

Views and view relations have been studied for a long time. However, existing work
on view relations is fragmented. The framework presented in this paper shows that
there is a common ground for relations. There are strong arguments for making rela-
tions first-class concepts in ADs, treating them on equal terms as architectural views.
As soon as an AD contains multiple views, these views are related since they describe
the same system. Making the relations explicit improves the clarity of the architectural
documentation. It forms the basis for consistency checking, for automatic analysis and

Characterizing Relations between Architectural Views 79

verification of quality attributes and system wide properties, for tracing design deci-
sions, etc.

An important observation is that existing ADLs, such as AADL, xADL, Acme, π-
ADL [35], Fractal ADL [7] and AO-ADL [37] offer support for multiple types of ar-
chitectural elements, but do not offer first-class support for architectural views in a way
advocated by ISO 42010. ADLs lack facilities for specifying and relating several archi-
tectural views that cope with a diversity of architectural concerns. To the best of our
knowledge, the AIM ADL for embedded systems [38] is the only notable exception.
Imperative to exploit such view-based ADLs will be tool support. A tool can interac-
tively suggest view relations based on particular heuristics, such as similar names and
similar architectural patterns. Visual editors can simplify the specification of relations
between views. On the fly generation and visualization of overlay views, or highlighting
the elements involved in a relation, can improve the understanding and use of relations
between views.

As a closing remark, a first-class concept of relations is just the start. A lot of work
must be done to concerning practical problems like conflicts between views, integration
of views, comparisons between different approaches in modeling the same views, and
how to enforce consistency amongst views.

Acknowledgement

We are grateful to Christina von Flach, Peter Eeles, Bedir Tekinerdoğan, Hasan Sozer,
Tomi Männistö, Thorsten Keuler and the other attendees of the Birds-of-a-Feather ses-
sion on Relations between Views at WICSA 2008 for the interesting discussions. We
also express our appreciation for the valuable input and feedback from Dimitri Van
Landuyt, John Klein, Rich Paige and Steven Op de beeck.

This research is partially funded by the Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, and by the Research Fund K.U.Leuven. Nelis is
supported by the Institute for the Promotion of Innovation through Science and Technol-
ogy in Flanders (IWT-Vlaanderen). Danny is supported by the Foundation for Scientific
Research in Flanders (FWO-Vlaanderen).

References

1. Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D.: Differencing and merging
of architectural views. Automated Software Engineering 15(1), 35–74 (2008)

2. Atkinson, C., Kühne, T.: Aspect-oriented development with stratified frameworks. IEEE
Software 20(1), 81–89 (2003)

3. Bass, L., Clements, P., Kazman, R.: Software Architectures in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

4. Boiten, E., Bowman, H., Derrick, J., Linington, P., Steen, M.: Viewpoint consistency in ODP.
Computer Networks 34(3), 503–537 (2000)

5. Boucké, N.: xADLComposition: a tool for view composition in xADL,
http://www.cs.kuleuven.be/∼nelis/xADLComposition

6. Boucké, N., Holvoet, T.: View composition in multi-agent architectures. Special issue on
Multiagent systems and software architecture, International Journal of Agent-Oriented Soft-
ware Engineering (IJAOSE) 2(2), 3–33 (2008)

http://www.cs.kuleuven.be/~nelis/xADLComposition

80 N. Boucké et al.

7. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal component
model and its support in java: Experiences with auto-adaptive and reconfigurable systems.
Softw. Pract. Exper. 36(11-12), 1257–1284 (2006)

8. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures, Views and Beyond. Addison-Wesley, Reading (2003)

9. Cordero, R.L., Salavert, I.R.: Relating software architecture views by using MDA. In: Ger-
vasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 104–114.
Springer, Heidelberg (2007)

10. Dashofy, E., van der Hoek, A., Taylor, R.: A comprehensive approach for the development
of modular software architecture description languages. ACM Transactions on Software En-
gineering and Methodology (TOSEM) 14(2), 199–245 (2005)

11. Dijkman, R.M., Dumas, M.: Service-oriented design: a multi-viewpoint approach. Interna-
tional journal of cooperative information systems 13(4), 337–368 (2004)

12. Dijkman, R.M., Quartel, D., van Sinderen, M.J.: Consistency in multi-viewpoint design of
enterprise information systems. Information and Software Technology (2007)

13. Dijkman, R.M., Quartel, D.A.C., Pires, L.F., van Sinderen, M.J.: An approach to relate view-
points and modeling languages. In: Proceedings. Seventh IEEE International Enterprise Dis-
tributed Object Computing Conference, pp. 14–27 (2003)

14. Dingwall-Smith, A., Finkelstein, A.: Checking complex compositions of web services
against policy constraints. In: MSVVEIS, pp. 94–103. INSTICC PRESS (2007)

15. Egyed, A.: Heterogeneous view integration and its automation. PhD thesis, Los Angeles,
CA, USA, Adviser-Barry William Boehm (2000)

16. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: a frame-
work for integrating multiple perspectives in system development. International Journal of
Software Engineering and Knowledge Engineering 2(1), 31–57 (1992)

17. Fradet, P., Le Métayer, D., Périn, M.: Consistency checking for multiple view software ar-
chitectures. SIGSOFT Softw. Eng. Notes 24(6), 410–428 (1999)

18. Garlan, D., Monroe, R.T., Wile, D.: ACME: Architectural description of component-based
systems. In: Foundations of Component-Based Systems. Cambridge University Press, Cam-
bridge (2000)

19. Giese, H., Vilbig, A.: Separation of non-orthogonal concerns in software architecture and
design. Software and Systems Modeling 5(2), 136–169 (2006)

20. Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley Longman
Publishing Co., Boston (2000)

21. IEEE1471. Recommended practice for architectural description of software-intensive sys-
tems (ANSI/IEEE-Std-1471) (September 2000)

22. ISO. Second working draft of Systems and Software Engineering – Architectural Description
(ISO/IEC WD2 42010). Working document: ISO/IEC JTC 1/SC 7 N 000

23. ISO. ISO/IEC 10746-2 Information Technology – Open Distributed Processing – Reference
Model: Foundations (September 1996)

24. ISO. ISO/IEC 42010 Systems and Software Engineering – Architectural Description (July
2007)

25. Jackson, M.A.: Some complexities in computer-based systems and their implications for
system development. In: Proceedings of Comp. Euro. 1990. IEEE Computer Society Press,
Los Alamitos (1990)

26. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50 (1995)
27. Melton, R., Garlan, D.: Architectural unification. In: CASCON 1997: Proceedings of the

conference of the Centre for Advanced Studies on Collaborative research, p. 18 (1997)
28. Muskens, J., Bril, R.J., Chaudron, M.R.V.: Generalizing consistency checking between soft-

ware views. In: WICSA 2005: Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture, pp. 169–180. IEEE Computer Society, Los Alamitos (2005)

Characterizing Relations between Architectural Views 81

29. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency checking and
smart link generation service. ACM Trans. Inter. Tech. 2(2), 151–185 (2002)

30. Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible consistency checking.
ACM Trans. Softw. Eng. Methodol. 12(1), 28–63 (2003)

31. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between multiple
views in requirements specification. In: International Conference on Software Engineering,
pp. 187–196 (1993)

32. OMG. Model Driven Architecture (MDA)
33. OMG. Unified Modeling Language 2.0: Superstructure (August 2004)
34. OMG. Meta Object Facility 2.0: Query/View/Transformation Specification (August 2007)
35. Oquendo, F.: Pi-adl: an architecture description language based on the higher-order typed pi-

calculus for specifying dynamic and mobile software architectures. SIGSOFT Softw. Eng.
Notes 29(3), 1–14 (2004)

36. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT Softw.
Eng. Notes 17(4), 40–52 (1992)

37. Pinto, M., Fuentes, L.: Ao-adl: An adl for describing aspect-oriented architectures. In: Mor-
eira, A., Grundy, J. (eds.) Early Aspects Workshop 2007 and EACSL 2007. LNCS, vol. 4765,
pp. 94–114. Springer, Heidelberg (2007)

38. Radjenovic, A., Paige, R.F.: The role of dependency links in ensuring architectural view
consistency. In: WICSA 2008: Proceedings of the Seventh Working IEEE/IFIP Conference
on Software Architecture (WICSA 2008), pp. 199–208 (2008)

39. Ross, D.T.: Structured Analysis (SA): a language for communicating ideas. IEEE Transac-
tions on Software Engineering SE-3(1), 16–34 (1977)

40. Rozanski, N., Woods, E.: Software Systems Architecture. Addison-Wesley, Reading (2005)
41. Sabetzadeh, M., Nejati, S., Easterbrook, S., Chechik, M.: A relationship-driven approach to

view merging. SIGSOFT Softw. Eng. Notes 31(6), 1–2 (2006)
42. SAE: Society of Automotive Engineers. Architecture analysis and design language (AADL)
43. Tekinerdogan, B., Hofmann, C., Aksit, M.: Modeling traceability of concerns for synchro-

nizing architectural views. Journal of Object Technology 6(7), 7–25 (2007)
44. W3C. XML path language (XPath), http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

How Do Agents Affect Modifiability? A

Comparison between Two Architectures for
Intelligent Virtual Environments for Training

Gonzalo Méndez and Angélica de Antonio

Computer Science School
Technical University of Madrid

gonzalo@gordini.ls.fi.upm.es, angelica@fi.upm.es

Abstract. The use of agents is spreading as a means to develop dif-
ferent kinds of software systems, among which we can find Intelligent
Virtual Environments for Training. The agent community has already
started to pay attention to software engineering issues to develop agent-
oriented systems, but they are mainly focused on methodologies and, to
some extent, design patterns. However, not much attention has been paid
to software architecture for the moment. We compare two agent-based
software architectures for Intelligent Virtual Environments for Training
that are intended to be easily extended and modified. The first one was
designed using an organizational approach recommended by some agent
oriented methodologies. The second one is a redesign of the first architec-
ture using more formal principles and methods of software architecture
design. A comparison between both architectures highlights the need to
pay more attention to software architecture design in this field.

1 Introduction

An Intelligent Tutoring System (ITS) is an application of computer science to
education that has a particular structure shown in Fig 1 [1,2]. They are different
from other educational software in that they are intelligent, since their purpose
is to adapt teaching to the abilities and characteristics of every student. In
addition, their structure was thought to make it possible to easily change the
teaching domain (expert module), the tutoring strategy (tutoring module) or
the way students are modeled in the system (student module). However, the
biggest success of ITSs is the fact that a great deal of researchers in educational
software use the structure shown in Fig. 1, with research groups specializing in
the development of each of the different modules.

Educational Virtual Environments are software systems that make use of three
dimensional Virtual Environments (VEs) for education and training. Their de-
velopment has a quite short history, dating from the mid-nineties, and in some
cases they have evolved from the necessity to integrate a Virtual Environment
with an ITS. The use of Virtual Environments in fields such as military or in-
dustrial training has proven to be a very promising application area, so part of

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 82–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How Do Agents Affect Modifiability? 83

Fig. 1. Architecture of an ITS

the education community are making use of them to develop Intelligent Virtual
Environments for Training (IVET), which are the conjunction of an ITS and a
Virtual Environment for training.

The youth of the field, together with the complexity and variety of the tech-
nologies involved, have led to a situation in which neither the architectures nor
the development processes have been standardized yet. Therefore, almost every
new system is developed from scratch, in an ad-hoc way, with very specific so-
lutions and monolithic architectures (even if they allegedly make use of the ITS
structure), and in many cases forgetting the principles and techniques of the
Software Engineering discipline [3].

The MAEVIF project (Model for the Application of Intelligent Virtual En-
vironments to Education) was the result of several experiences integrating VEs
and intelligent tutors [4,5] that served to point out the problems that commonly
arise in such integrations. The objective of the MAEVIF project was to define
a model for the application of intelligent virtual environments to education and
training, which involved: the definition of a generic model for intelligent learn-
ing environments based on the use of virtual worlds; the definition of an open
and flexible agent-based software architecture to support the generic model of
an Intelligent Virtual Environment for Training; the design and implementa-
tion of a prototype authoring tool that simplifies the development of IVETs,
based on the defined architecture; and the definition of a set of methodological
recommendations for the development of IVETs.

In this paper we present two different approaches to the design of a software
architecture for IVETs. The first one is the result of applying a specific Agent
Oriented Software Engineering methodology, while the second is the result of
applying more specific, architecture centric techniques. Our aim is to use our
system as a case study for the application of general software engineering tech-
niques to the development of agent-oriented software, since we believe the agent

84 G. Méndez and A. de Antonio

community is not making enough use of the knowledge produced by the software
engineering community in general, and the software architecture community in
particular.

In the remainder of the paper we briefly describe the first version of the ar-
chitecture and the results of evaluating it (section 2). Then, we describe how
the agent-based software architecture has been designed using software architec-
ture principles (section 3) and how it is being evaluated (section 4). After that,
we present some related work where agents have been used to develop IVETs
(section 5). Finally, we present some conclusions and ongoing work (section 6).

2 An Agent-Based Architecture for IVETs

There are two main reasons why we have chosen agents to develop this system
instead of a more traditional approach, either object or component oriented. The
first reason, as described in [6] is the fact that, given the increasing complexity
that the development of IVETs involves, agents represent a powerful tool to use
abstraction as a way to face complexity. In addition, the fact that many agent
platforms are developed on top of object oriented languages makes it possible
to take advantage of all the possibilities provided by these languages (i.e. JADE
and Java).

The second reason is that, although a widely accepted definition of agent does
not currently exist, many authors agree on a set of features that agents must
have, among which we can find both proactivity and situatedness. Given the fact
that IVETs are a highly interactive kind of application, proactivity is a feature
that is very well suited for their development, since it facilitates the design of
tutors that interact with the students in a human-like way. In addition, training
inside an IVET makes it necessary for the tutor to be aware of the structure
and state of the environment where that training is taking place. Therefore,
situatedness is a feature that makes it possible to manage that information in a
more natural way.

This does not mean that the mere use of agents is the solution for all problems,
but properly used they are likely to ease the design and implementation of a
suitable solution.

2.1 A Hierarchical Approach

Taking the structure described in the previous section as a starting point, the
next step was to decide which software agents were necessary to transform it
into an agent-oriented architecture, which has been designed using the GAIA
methodology [6]. In this methodology, the authors suggest the use of the or-
ganizational metaphor to design the software architecture, which requires the
analysis of the real world organization in order to emulate its structure. This ap-
proach does not always work (depending on particular organization conditions),
but in this case, considering the architecture of an ITS as the organization to
reproduce, it is possible to imitate its structure to develop the architecture.

How Do Agents Affect Modifiability? 85

Fig. 2. Decomposition view of the agent-based architecture

There is an additional reason to use an ITS structure as a starting point:
the ITS architecture shown in Fig. 1 is widely used by the educational software
community. Therefore, if we aim at being able to exchange elements between
different applications, making use of a widely used, well known structure is likely
to facilitate this task.

The ITS architecture was transformed, from a modular point of view, into an
agent-based architecture. It has five agents corresponding to the four modules
of the ITS architecture plus an agent that represents the Virtual World: Com-
munication Agent, Student Modeling Agent, Expert Agent, Tutoring Agent and
World Agent.

Analyzing the responsibilities of these agents, some additional roles can be
identified that point to the creation of new, subordinate agents that can carry
them out, subsequently giving rise to a hierarchical multi-agent architecture.
Each subordinate agent is in charge of managing some process and the infor-
mation related to it, while each supervisor agent is in charge of coordinating
its subordinate agents and communicating them with other subordinate agents
through their respective supervisor. A decomposition view of this architecture
can be seen in Fig. 2.

86 G. Méndez and A. de Antonio

For more details about this architecture, we suggest reading [7] or a more
detailed description in [8].

2.2 Discussion

All along the design and development of the architecture, one of the aspects
that has had a bigger impact on it has been the planning process, since, due to
the fact that it is a collaborative task, a change in the planning method or in
the way that knowledge is represented may imply changes in all the agents that
take part in it. At the beginning, a simple STRIPS planner [9] was implemented.
However, trying to substitute it with one based on SHOP2 (Simple Hierarchical
Ordered Planner 2) [10] showed that it was far more complicated and required
more changes than expected.

Another aspect we tested was how easy it was to add new functionality to the
IVET. To do this, we added an embodied tutor whose goal was to observe what
happened in the VE and follow the student to supervise him. It was necessary
to add two new agents and, although it was quite easy to make these changes, it
soon became clear that any non-trivial change was likely to affect at least one of
the supervisor agents (the one that supervises the modified agent) if not more.
In addition, all the agents knew of the existence and identity of the agents they
had to communicate with, so they were easily affected by changes.

There were some other factors that made us think that a redesign of the
architecture was necessary, both at design and implementation levels. One of
them was the poor performance the system offered when several students were
taking part in a training session. Several tests pointed out that the agent platform
presented a fairly good performance, and so did the VE. The problem arose when
running both of them at the same time in different machines, which made us
think of poor communication performance.

In addition, we were having problems when trying to add new functional-
ity, since it was not clear whether some responsibilities were to be assigned
to the expert agent or to the world agent, both of which started to be too
coupled for the system to be modifiable. This is a problem that usually arises
when establishing classifications and hierarchies: if the criteria used for classi-
fication changes or some elements dont fully fall under one of the categories,
then the decomposition degrades quite quickly. This was the case with our
architecture.

Finally, there were other facts that pointed out the unsuitability of the ar-
chitecture. Among them, some are described in [11] as an indication of a poor
design, such as the proliferation of agents to carry out small tasks, the difficulty
to assign responsibilities to an agent or the existence of agents that carry out
actions for which an agent is not needed. These problems were caused, at least
partially, by the lack of an architectural design method in a not very mature
field like IVETs.

How Do Agents Affect Modifiability? 87

3 Architectural Redesign

The main theoretical support to redesign the architecture has been the body of
work on software architecture developed at the Software Engineering Institute
(SEI) [12,13], such as Attribute Driven Design (ADD) and Architecture Tradeoff
Analysis Method (ATAM). Their purpose is to design and evaluate a software
architecture driven by the quality attributes desired for it, instead of only the
functionality. A set of scenarios is used to help identify the quality attributes
that are relevant for the architecture, based on the stakeholders interests, and
to evaluate the architecture in order to identify potential risks.

The other important support has been provided by the use of information
hiding [14]. The design decisions that are encapsulated in each module are related
to the changes that are perceived to be likely over the system’s life. The way to
design is to use abstraction as a means to face complexity and facilitate changes.

Although we planned to use ADD as the architectural design method, we
discarded it after a few design sessions because of two reasons. The first reason
is the fact that ADD is based on a hierarchical system decomposition, and one
that does not allow elements to have more than one father. After the experience
gained with the previous architecture, we did not think a hierarchical structure
was what we wanted to obtain. In addition, one of the problems we had with
the first architecture was the fact that some agents were not clearly under the
supervision of one of the five supervisor agents. The second reason has to do
with the complexity of decomposing a module in more than four or five elements,
which was likely to be the case (in the current design, the ITS consists of nine
different kinds of agents).

We soon found two more grounded reasons to discard ADD as a design
method. The first one is Parnas argument expressed in [15], where he clearly
states that, although maybe desirable, information hiding and hierarchical struc-
ture do not always go together. On the contrary, we consider information hiding
to be a design criterion, and not just a decomposition one. The other reason
can be found in [16], where the author analyzes Simon’s “Architecture of Com-
plexity” and identifies the historical reasons that made hierarchical structure a
predominant design mechanism.

Agent systems are intrinsically peer-to-peer (after all, they were born in the
distributed artificial intelligence field), where each agent is a peer that makes use
of services offered by other agents to carry out the responsibilities assigned to it.
Therefore, this is the approach we have followed to design the new architecture.

Like ADD suggests, we have started by selecting the architectural drivers for
our application, some of which were very well identified thanks to the analysis
of the previous system. However, instead of following a decomposition approach,
we have worked using an iterative an incremental approach.

If we think of a system we need to extend, we don’t face this task by decom-
posing some part of the system. Instead, we usually try to make the new parts fit
using the architectural mechanisms we used to design the existing architecture.
Thus, this is the approach we have followed. We have started by designing a core

88 G. Méndez and A. de Antonio

architecture with a very small functionality, and we have proceeded by adding
new functionality in each iteration.

As Haythorne states in [17], a system is only modifiable in the points that
are designed to accept modifications, and we can have such a design only if
we know the modifications we expect to happen. For the initial architectural
design, we had a fairly clear idea of the modifications we were going to add
(those corresponding to the functionality we wanted the system to have), so in
each iteration we proceeded by adding one of the modules we had identified as
likely to be substituted, along with what the existing modules would need to use
from the new ones. Every time a feature had to be added, or a change had to
be made, it was tested against the architectural drivers until a way was found
to satisfy them. At that moment, the change was added to the architecture.

This approach to the architectural design has been useful in two ways. First,
it has allowed us to make sure the architectural drivers have been taken into
account or where and why they have not. Second, it has also made it possible
to identify existing dependencies between agents, so we have obtained a list of
possible changes we may have to make when substituting a specific agent.

In addition, this design method has allowed us to test the service oriented
approach we have used to design the system (which we describe below) and we
have been able to make sure that, with the information we have about the system
and possible changes, the architecture may be easily modified to include them.

This is probably one of the issues ADD still has to address, since it is not
always possible to face a new design or modification as a (hierarchical or not)
decomposition.

3.1 Quality Attributes

The design started with the definition of a set of quality scenarios to establish
what kind of changes were to be considered by the design. In general, this changes
have to do with the ability to substitute an agent with a different one that
provides a similar functionality, or to move some responsibility from one agent
to another. This is required because one of the objectives of the system is to be
used as a test-bed for teams developing just some of the elements of the ITS
(e.g. the student modelling or the tutoring strategy).

Another kind of change is the possibility to turn off some functionality, such as
supervision, so that the student can use the system in an exploratory way without
the tutor interrupting him (although the system would continue registering his
actions), or even disabling tutoring completely.

The system is also required to be easily extended, so that new agents that
provide new functionality can be added without having to make changes in
the existing ones (at least, in the ones that don’t make direct use of the new
functionality).

Taking into account that training is carried out in a VE, all these modifiability
requirements cannot be an obstacle for the main objective of the system, which
is to provide students with a training environment as similar as possible to the
real one. For that, it is of utmost importance to keep performance close to real

How Do Agents Affect Modifiability? 89

time. If not, training in the IVET may be somehow frustrating for the student,
which may cause the training experience to be less efficient than other, more
traditional, methods.

There is a usability attribute, adaptation to the user, that has not been con-
sidered explicitly because it is already included in the features of an ITS. The
student modelling is used to personalize the training process to the student’s
abilities and needs, so it has not been necessary to consider it as an additional
quality attribute to take into account.

3.2 Design Decisions

With the described modifiability objectives in mind, the approach we followed
was to keep the agents as anonymous as possible, so that no agent directly knows
which agents are carrying out the actions they need to successfully complete their
responsibilities. To achieve this, during system startup, the agents announce in
the system’s yellow pages the services they are capable to provide to other agents.
Thus, an agent does not know how many or what kind of agents there are in the
system; they just know that there is an agent that can provide a certain service
they need. This way, it is easier to change the agent that provides a service, as
long as the service is provided in the same terms the original one was.

Once the agent finds the service it is looking for, it can act in two different
ways. If the service involves frequent updates, the agent subscribes to an update
list, so that every time an update arrives, it is immediately informed about it.
If, on the contrary, the agent only needs to request the service at specific times,
it annotates which agent it has to request the service to. In both cases, the
decision is made at runtime, so changes in the design are easier to carry out.
We considered the possibility of giving the chance to change the service provider
any time during runtime, but we discarded it because it is not likely to happen
in a system of this kind.

The agents communicate with each other exchanging FIPA ACL messages.
Since it is a quite extended formalism, the difficulties may come from the com-
munication protocol. We have designed a fairly simple communication protocol
for a given agent to request a service from another agent. Agent A sends a re-
quest to agent B, who acknowledges the reception of the request. Then agent B
carries out the required actions and sends agent A the result of the execution
of the service (or a message with the reasons why it could not be carried out).
Agent A acknowledges the reception of the result and the communication stops
until another service request is required.

A similar mechanism has been used to communicate the agent platform with
the VE, but with an even simpler communication mechanism. A communication
centre has been designed where both the agent platform and the VE send their
messages for other applications to receive them. Each application subscribes to
the messages it is interested in receiving, so that, for example, different VEs or
different versions of a VE only receive the messages they know how to handle.

90 G. Méndez and A. de Antonio

Fig. 3. Peer-to-peer view of the new architecture. Ellipses represent agents and arrows
show communication channels.

We have used this possibility all along the development of the agent platform, so
we could send the messages we wanted to test from a console instead of having
to run the VE and carry out a specific procedure before the message we were
interested in could be sent.

We have also made use of configuration files to set up the training session.
Thus, the description of the procedures to be trained, the composition of the
scenarios, the objectives of the activity, its participants or the parametrization
of the tutoring strategy are all read from several configuration files, which allows
changes in the way the system behaves without further changes in the design.

3.3 Resulting Architecture

The resulting architecture is the one shown in Fig. 3. The picture shows the
structure of the architecture as it is currently designed, where all the agents are
represented along with the communication channels (the yellow pages are not
represented, since all the agents communicate with them).

During runtime, there is only one agent of each kind, except for the agents
that are directly related with students: the Student Modelling Agent and the
Communication Agent. This is so because, having several students, the system
can handle the communication with them in parallel. In addition, if the agent
platform needs to be distributed in different machines, the distribution can be
made in terms of the number of students.

How Do Agents Affect Modifiability? 91

The main differences with the former architecture are:

– There is no hierarchical structure. Since the existence of the supervisor agents
was due to modifiability reasons, and it was only achieved in a low degree,
it has been considered preferable to use a peer-to-peer style.

– It uses a publish-subscribe style to offer a service oriented behaviour. Agents
advertise their services in the yellow pages and other agents can subscribe
to the services they are interested in. This is one of the mechanisms that
introduces a higher degree of modifiability in the system.

– Task planning is not a collaborative task any more. The planning agent acts
as a wrapper [18] for the planner, hiding details of its functioning to the rest
of the system and enabling the change of the planing algorithm with a lower
impact than collaborative planning had.

– Extended support for a simulator. Some systems such as the one described in
[19] simulate environmental events that may be caused by external factors,
such as changes in the state of a patient. In the cited system, events are
directly simulated in the VE, but it may also be desirable to use an external
simulator in cases where it has already been implemented or when it has a
complex behaviour. The simulation agent can now simulate simple systems,
but it can also receive information from a simulation running together with
the VE or act as a wrapper of an external simulation.

– The tutoring strategy can be adjusted by changing some parameters that are
read from a configuration file during the initialization of the system. These
parameters are expected to change dynamically with the new design of the
student modelling agent.

– The world agent is responsible for maintaining an ontology that stores the
state of the VE. A simple reasoning engine has been added so that the world
agent is able to provide richer answers to the student.

– A message centre is now used to communicate the different subsystems that
form the training system. Each subsystem registers in the message centre
and requests the kind of information it is interested in. Currently, in addition
to the VEs and the ITS, a command line console can also connect to the
message centre with debug purposes.

After the redesign, the implemented system has not shown any of the unde-
sired properties the former one had. Performance is quite good, with no apparent
latencies, two new agents and some new responsibilities have been quite easy to
add and all agents seem to have well defined roles in the architecture. We have
not been able to test the effects of changing the planner, since that change has
not been required for the moment, although the evaluation we have run suggests
it should not have a big impact on the architecture, given that it is now under
the responsibility of a single agent.

There is one sensitivity point we have not been able to avoid, which has to
do with the dependency there is between the tutoring agent and the student
modelling agent. However, this dependency has to do with the original ITS
architecture, and trying to solve it would require a completely different design
approach that would probably make the substitution of these two agents a very
problematic task.

92 G. Méndez and A. de Antonio

4 Evaluation

In addition to the more formal design and documentation of the software ar-
chitecture, we are currently evaluating the suitability of the architecture to our
needs both at architectural and runtime levels.

At the architectural level, the evaluation requires the use of quality scenarios
provided by the stakeholders to identify relevant quality attributes. We are trying
to gather a thorough collection of scenarios that gives us a better understanding
of the implications of the design decisions we have made. In order to do it, we
have run an ATAM session and we are planing to run another one in the context
of a 3-year research project, ENVIRA, that has already started in conjunction
with two other research groups that will be using the multiagent system to
develop their own training systems.

In the first session, the participants were the members of the development
team, and we only made use of some steps of Phase 0 and of Phase 2 of ATAM,
as described in [13], since all of them were familiar with the architecture. The
main objectives of this session were to identify and evaluate use case scenarios
and growth scenarios.

Given the composition of the group that took part in the evaluation, no signif-
icant results were obtained in terms of use case scenarios, although we have been
able to check that the design decisions we made while designing the architecture
were still valid. As for the growth scenarios, we were able to identify sensitivity
points that we will have to cope with in the ENVIRA project. These sensitivity
points have to do with the addition of a new student modelling scheme and a
cognitive architecture for virtual characters managed by agents.

We have already scheduled a second ATAM session where the members of the
other two research teams will also take part. In this session, we expect to get
more results about growth scenarios related to their assignments in the project
and a few exploratory scenarios provided by the members of the three research
groups that are taking part in the ENVIRA project.

To test the system at runtime level, we are developing it in an iterative way.
Each agent is being developed apart from the rest of the system, and the agents
they need to communicate with have been substituted by ’dummy’ agents. At
the end of each iteration, the dummy agents are removed and substituted by the
agents that are under development. This way, the development keeps focused
on three aspects: adherence to the designed communication protocols; change
of one agent by a different one, even if it is as simple as the dummy agents
are; turning some functionalities on and off, with the aid of the dummy agents
(although another mechanism is to be designed so that the dummy agents are
not necessary to turn off functionalities).

There is already a functional application that offers much of the functionality
that the previous version provided. For the moment, the student modelling is
quite simple, as well as the simulation agent. In contrast, the tutoring agent is
capable of supervising the student, providing different levels of hints and answers
to the student’s questions. The planning agent is already capable of planning a
procedure and replanning alternatives in response to the student’s actions, and

How Do Agents Affect Modifiability? 93

the world an expert agents provide support to the tutoring agent, so that it can
provide better assistance to the student according to the state of the environment
and the characteristics of the procedure the student is training. Both the agent
platform and the VE show an adequate performance when running at the same
time in the same or different machines, either with one or two students. Further
testing is needed to add more students, but with the current results we expect
the system to behave better than the previous version.

5 Related Work

There are several projects aiming at the use of VR for education and training
supported by intelligent agents. The first ones were developed over a decade ago,
and the most representative among them are Steve [20], Adele [21], Cosmo [22],
Herman the Bug [23] and Vincent [24]. What all of them have in common is
the fact that the primary objective in all of them was to develop an embodied
pedagogical agent to support education and training. Each of them tried to solve
some of the problems that this emerging discipline posed.

None of these systems are structured as multiagent systems, but as a single
agent that inhabits a particular virtual world, and each of them exhibits its own
internal architecture. Even so, they have been the key to identify some of the
issues that researches are still trying to solve in a satisfactory way.

There are some examples of multiagent systems that support education and
training without using VEs. That is the case of FILIP, a multiagent system for
training based on simulations [25] to provide training for air controllers. The
system is composed by seven agents that cover the modules of an ITS: one for
the student, one for the expert, three for the tutor (skill development, curriculum
and instructor agents) and two other agents related to the communication with
the learning environment and the user.

Baghera is another example of multiagent system used to teach geometry [26].
The aim of this system is to study emergent behaviours in multiagent systems.
What makes this system more interesting is the fact that agents are organized
in two levels, and the number of agents is not fix, but varies according to the
number of students connected to the system. Each student is assisted by three
agents: the personal interface agent, which monitors the student’s actions, the
tutor agent and the mediator agent. In addition, the tutor is assisted by two
agents: the personal interface agent and the assistant agent. All these agents are
supported by second level agents of four different kinds, which are in charge of
evaluating the student’s actions. This is made through a voting mechanism that
causes the emerging behaviours that are the subject of study.

The systems that are closer to the one described in this paper are those that
are based on multi-agent systems and make use of VEs to support training. A
good example is MASCARET (Multi-Agent Systems to simulate Collaborative,
Adaptive and Realistic Environments for Training) [27], an agent-based IVET
that has been used to train firemen in operation management. In this system,
agents are divided in organizations, each of which controls different aspects of the
organization: physical, social, pedagogical, mediation, and human interaction.

94 G. Méndez and A. de Antonio

The agents that integrate the pedagogical organization cover the four modules
of an ITS, plus a fifth module that is in charge of controlling the mistakes an
student may make. The expert agent communicates with the social and physical
organizations to be able to know what to to and what objects and agents are
involved in an action.

Lahystotrain is an IVET developed to train surgeons in laparoscopy and hys-
teroscopy interventions [19]. This systems contains five agents which help the
student in the training process. One of them is the tutor, which supervises the
student and registers his actions. An assistant agent provides explanations and
interrupts him when he makes a mistake. These agents have an ad-hoc architec-
ture tailored to suit their responsibilities. The other three agents take the role
of an auxiliary surgeon, a nurse and an anaesthetist that play their role within
the team. Their architecture is the same for all three, and it is a kind of BDI
architecture with a perception module, a reasoning engine and an action control
module. The student must learn what the role of these three agents is and how
to coordinate them.

What most of these systems have in common is the fact that they have been
developed to solve a specific problem, but only a few of them have been designed
to be reusable, at least to some extent [20,28], and apparently none of them have
taken advantage of the existing knowledge on software architecture. This is an
aspect that was already put forward in [29], where three main problems are
mentioned: the fact that most research groups develop only part of the systems,
which does not give them a view about the whole design; systems are tailored
to solve specific problems; and designs are not evolutive. They claim that an
ITS can be developed as a set of independent agents that exchange messages
in a predefined language, and they use the concept of federated architecture
[30] to articulate their system GIA. To some extent, the architecture described
in this paper follows those guidelines, although the federated architecture has
been substituted by a service oriented approach and a more formal software
engineering support has been used.

There are few examples of multiagent systems that have been evaluated us-
ing ATAM. Among these systems, we can highlight the work presented in [31],
where the authors report a successful utilization of an ATAM workshop to evalu-
ate an agent-based software architecture for an industrial transportation system.
Although they do not explain the method that was used to design the architec-
ture, they suggest they took quality attributes into account when designing it.

Another work reporting the use of ATAM is the one described in [32], which is
the first reference we have found about the use of ATAM to evaluate a multiagent
system. In this work, the authors put forward what they think to be relevant
attributes in agent-based systems: performance predictability, security against
data corruption and spoofing, resilience to modifiability of the environment and
availability and fault tolerance. Although not all of them are applicable to the
system presented in this paper, this work constitutes an important approach from
agent-oriented software development to more traditional software construction.

How Do Agents Affect Modifiability? 95

6 Conclusions and Ongoing Work

It is getting common for Virtual Environments for Training to be designed as
Multi-Agent Systems, since agents provide a higher level of abstraction than
objects and this helps to face the increasing complexity that involves the devel-
opment of these systems.

Many authors claim, without further proof, that their systems are flexible
because they are using agents to build them, and to some extent we may have
made the same mistake in our first version of the architecture. Although it had
been designed with modifiability in mind, it soon became clear that successive
modifications were making the architecture degrade quite quickly. That expe-
rience is one more example to show that the mere use of agents (or any other
technology) does not guarantee that the application developed using them will
have certain properties. On the contrary, the result may be even worse if the
design decisions have not been made with care.

In the second version of the architecture, we have tried to take advantage
of the growing experience in the field of software architecture, even if it is not
specifically agent oriented – something that is not considered to be necessary at
the architectural level [12] –. Even so, we have used agents in the architectural
design because they involve the use of certain artifacts, such as yellow pages or
asynchronous message passing, that are relevant in the architectural design.

However, we have not been able to use ADD for the architectural design,
given the fact that a hierarchical decomposition does not seem to suit our needs.
A review of the new version of ADD [33] shows it is based on the same design
strategy, so we still need a different design approach that is not based on hierar-
chical structure and decomposition. Even so, designing with quality attributes
as architectural drivers as ADD promotes has resulted in a design that, up to
now, has proven to be more modifiable than the previous design was.

As for the use of ATAM, it is a valuable tool from which we still expect to
obtain useful results as soon as the second workshop is carried out

We are already making changes to the system to test to what extent it can
be modified, and they are being evaluated both on the architectural design and
on the implemented system. In addition to the modification of the student mod-
elling agent, there are two main changes that will prove the suitability of the
architecture. The first one is the inclusion of a model of human-like perception
[34] to use the student’s attention as part of the student’s model and as an
additional source of information for tutoring decisions. The second one is the
inclusion of a cognitive architecture that allows us to make use of virtual tutors
and teammates with complex, emotional behaviours [35].

Acknowledgements. The research presented in this paper has been funded
by the Spanish Ministry of Science through projects MAEVIF (TIC2000-1346),
ICEVAPI (TIN2004-07946) and ENVIRA (TIN2006-15202-C03-01)and has been
supported by the INTUITION NoE.

96 G. Méndez and A. de Antonio

References

1. Sleeman, D., Brown, J. (eds.): Intelligent Tutoring Systems. Academic Press, Lon-
don (1982)

2. Wenger, E.: Artificial Intelligence and Tutoring Systems. Computational and Cog-
nitive Approaches to the Communication of Knowledge. Morgan Kaufmann Pub-
lishers, Los Altos (1987)

3. Munro, A., Surmon, D., Johnson, M., Pizzini, Q., Walker, J.: An open architecture
for simulation-centered tutors. In: Proc. of AIED 1999: 9th Conference on Artificial
Intelligence in Education, Le Mans, France, pp. 360–367 (1999)

4. Mendez, G., Rickel, J., de Antonio, A.: Steve meets jack: the integration of an
intelligent tutor and a virtual environment with planning capabilities. In: Rist, T.,
Aylett, R.S., Ballin, D., Rickel, J. (eds.) IVA 2003. LNCS (LNAI), vol. 2792, pp.
325–332. Springer, Heidelberg (2003)

5. Mendez, G., Herrero, P., de Antonio, A.: Intelligent virtual environments for train-
ing in nuclear power plants. In: Proc. of the 6th Intl. Conf. on Enterprise Informa-
tion Systems (ICEIS 2004), Porto, Portugal (2004)

6. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3), 317–370 (2003)

7. Mendez, G., de Antonio, A.: Training agents: an architecture for reusability. In:
Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.)
IVA 2005. LNCS (LNAI), vol. 3661, pp. 1–14. Springer, Heidelberg (2005)

8. de Antonio, A., Ramirez, J., Mendez, G.: An Agent-Based Architecture for Virtual
Environments for Training. In: Developing Future Interactive Systems, pp. 212–
233. Idea Group (2005)

9. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

10. Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.: Shop2:
An htn planning system. Journal of Artificial Intelligence Research (JAIR) 20,
379–404 (2003)

11. Wooldridge, M., Jennings, N.R.: Software engineering with agents: Pitfalls and
pratfalls. IEEE Internet Computing 3(3), 20–27 (1999)

12. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
SEI Series in Software Engineering. Addison Wesley Professional, Reading (2003)

13. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures. The SEI
Series in Software Engineering. Addison-Wesley, Reading (2002)

14. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

15. Parnas, D.L.: On a ‘buzzword’: Hierarchical structure. In: Information Processing
1974, Proceedings of IFIP Congress 1974, pp. 336–339 (1974)

16. Agre, P.E.: Hierarchy and history in simon’s “architecture of complexity”. Journal
of the Learning Sciences 12(3), 413–426 (2003)

17. Haythorn, W.: What is object-oriented design? Journal of Object Oriented Pro-
gramming 7(1), 67–78 (1994)

18. Hayden, S., Carrick, C., Yang, Q.: Architectural design patterns for multi-agent co-
ordination. In: Proc. of the 3rd Intl. Conf. on Agent Systems (Agents 1999) (1999)

19. los Arcos, J.L., Muller, W., Fuente, O., Orúe, L., Arroyo, E., Leaznibarrutia, I.,
Santander, J.: Lahystotrain: Integration of virtual environments and its for surgery
training. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS,
vol. 1839, pp. 43–52. Springer, Heidelberg (2000)

How Do Agents Affect Modifiability? 97

20. Rickel, J., Johnson, W.L.: Animated agents for procedural training in virtual re-
ality: Perception, cognition, and motor control. Applied Artificial Intelligence 13,
343–382 (1999)

21. Shaw, E., Johnson, W., Ganeshan, R.: Pedagogical agents on the web. In: Proceed-
ings of the Third Annual Conference on Autonomous Agents, Seattle, WA, USA,
pp. 283–290. ACM Press, New York (May 1999)

22. Lester, J., Voerman, J., Towns, S., Callaway, C.: Cosmo: A life-like animated ped-
agogical agent with deictic believability. In: IJCAI 1997 Workshop on Animated
Interface Agents: Making them Intelligent, Nagoya, Japan (August 1997)

23. Lester, J., Stone, B., Stelling, G.: Lifelike pedagogical agents for mixed-initiative
problem solving in constructivist learning environments. User Modeling and User-
Adapted Interaction 9(1–2), 1–44 (1999)

24. Paiva, A., Machado, I.: Life-long training with vincent, a web-based pedagogical
agent. International Journal of Continuing Engineering Education and Life-Long
Learning 12(1) (2002)

25. Zhang, D., Alem, L., Yacef, K.: Using multi-agent approach for the design of an
intelligent learning environment. In: Wobcke, W., Pagnucco, M., Zhang, C. (eds.)
Agents and Multi-Agent Systems Formalisms, Methodologies, and Applications.
LNCS (LNAI), vol. 1441, pp. 221–230. Springer, Heidelberg (1998)

26. Webber, C., Pesty, S.: A two-level multi-agent architecture for a distance learn-
ing environment. In: de Barros Costa, E. (ed.) Workshop on Architectures and
Methodologies for Building Agent-based Learning Environments (ITS 2002), pp.
26–38 (2002)

27. Buche, C., Querrec, R., Loor, P.D., Chevaillier, P.: Mascaret: A pedagogical multi-
agent system for virtual environments for training. International Journal of Dis-
tance Education Technologies 2(4), 41–61 (2004)

28. Evers, M., Nijholt, A.: Jacob - an animated instruction agent in virtual reality.
In: Tan, T., Shi, Y., Gao, W. (eds.) ICMI 2000. LNCS, vol. 1948, pp. 526–533.
Springer, Heidelberg (2000)

29. Cheikes, B.: Gia: An agent-based architecture for intelligent tutoring systems. In:
Finin, T., Mayfield, J. (eds.) Proceedings of the CIKM 1995 Workshop on Intelli-
gent Information Agents, Baltimore, Maryland (1995)

30. Genesereth, M.: An agent-based approach to software interoperability. Technical
Report Logic–91–6, Logic Group Computer Science Department, Stanford Univer-
sity (1993)

31. Boucke, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the atam to an
architecture for decentralized control of a transportation system. In: Hofmeister,
C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 181–199.
Springer, Heidelberg (2006)

32. Woods, S.G., Barbacci, M.: Architectural evaluation of collaborative agent-based
systems. Technical Report CMU/SEI-99-TR-025, CMU/SEI (1999)

33. Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood,
B.: Attribute-driven design (add), version 2.0. Technical Report CMU/SEI-2006-
TR-023, CMU/SEI (2006)

34. Herrero, P., de Antonio, A.: Keeping watch: Intelligent virtual agents reflecting
human-like perception in cooperative information systems. In: Meersman, R., Tari,
Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS,
vol. 2888, pp. 129–144. Springer, Heidelberg (2003)

35. Imbert, R., de Antonio, A.: Using progressive adaptability against the complexity
of modeling emotionally influenced virtual agents. In: Proc. of the 18th Intl. Conf.
on Computer Animation and Social Agents (CASA 2005) (2005)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 98–113, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Architecture-Centric Development Environment for
Black-Box Component-Based Systems

Gerald Kotonya

Computing Department, Lancaster University,
Lancaster LA1 4WA, UK

gerald@comp.lancs.ac.uk

Abstract. Component-based software system development typifies traditional
engineering philosophy by promoting the construction of systems from pre-
fabricated software components. Underlying this philosophy is the promise of
accelerated, low cost development and reliable software systems. However, the
development strategy is hampered by the lack of practical methods and tools
that support the reuse-driven paradigm embodied in black-box components.
Current methods and tool environments provide poor support for the challenges
posed by developing systems from off-the-shelf black-box components. These
include poor support for: component discovery and verification, modelling and
mapping requirements to component architectures, negotiation, architectural
design and composition, and managing change. This paper describes an archi-
tecture-centric approach and environment for formulating, integrating and
deploying black-box component-based systems. Practical experience of using
the approach is illustrated with a real case study.

Keywords: Development environment, black-box components, architecture.

1 Introduction

The last ten years has seen the advent of several commercial component technologies
and a growing market of off-the-shelf components [1,2,3]. However, shift to develop-
ing large software systems using black-box components has been cautious [3,14]. One
of the reasons for this is the lack of practical software engineering methods and tools
that integrate key development with reuse activities (discovery, verification and nego-
tiation) with practical system development [4,15,17].

This paper explores these development challenges and proposes a novel service-
centred approach for developing component-based systems that is explicitly designed
to support development with black-box components. Services are used to provide a
framework for mapping between “ideal” requirements and available functionality, and
form the basis for architectural design. At the heart of the method is a Component
Architecture Description Language (CADL) [8] that provides mechanisms for:

• Partitioning services into abstract component architectures
• Searching and verifying plug-compatible black-box components

 An Architecture-Centric Development Environment 99

• Composing and adapting design-level components
• Visualising, mediating and validating component changes

Practical experience of using the approach is illustrated with a small industry case
study. The rest of this paper is organized as follows: Section 2 discusses the chal-
lenges developing systems from black-box components. Section 3 describes the pro-
posed COMPonent Oriented Software Engineering method (COMPOSE). Section 4
provides an overview of CADL. Section 5 describes development with COMPOSE
using a real case study. Section 6 provides some concluding thoughts.

2 Challenges of Developing Systems from Black-Box Components

Developing software systems from black-box components poses five key challenges:

 Component discovery and verification. Off-the-shelf software components have to
be discovered, understood and, sometimes adapted to work in a new environment.
For the development process to be successful, it must provide mechanisms for dis-
covering, verifying, adapting and ‘wiring’ plug-compatible components.

 Balancing need and availability. There is a conceptual gap between the way we
articulate requirements in custom development and the reuse-driven paradigm em-
bodied in black-box component-based system development. The features supported
by commercial software solutions vary greatly in quality and complexity. This to-
gether with the variability in application contexts means that specifications deliv-
ered with black-box software are likely to be inadequate [5,13].

 Architecting the system. A typical component-based system architecture comprises
a set of components that have been purposefully designed and structured to ensure
that they fit together and have an acceptable match with a defined system context.
However, poor support for negotiation and lack of effective techniques for defin-
ing, verifying, evolving and matching abstract designs to concrete components
make this a difficult task.

 Supporting diversity. The increasing complexity and diversity of software systems
means that it is unlikely that large systems will continue to be developed using a
purely component-oriented approach. Rather, a hybrid model of software devel-
opment is likely to emerge where components and other solutions such as web ser-
vices co-exist in the same system.

 Managing change. Traditional system maintenance involves observing and modi-
fying lines of code. However, in component-based development the main unit of
construction is often a black-box component or service. This limited visibility to
the component design presents fundamentally different change management tasks
and has major implications for the way we manage and evolve composition-based
systems [8].

There are several modelling tools and environments intended to support compo-
nent-based development. Perhaps the best known is the Unified Modelling Language
(UML) [10]. However, while the latest versions of UML offer some support with
constructs for modelling component-based based systems, these are largely intended
to support custom development (UML does not support the notion of component
discovery and verification). UML component diagrams are not intended to provide a

100 G. Kotonya

logical decomposition of a software system into reusable and combinable subsystems.
In addition, UML modelling is largely domain-driven, which usually leads to designs
based on domain objects and non-standard architectures. Lastly, UML provides no
easy way of addressing “compositional mismatches”.

Other component-based development environments are typified by WREN [7],
model driven approaches such as ASF+SDF [9] and component tools for Networked
Embedded Systems (NEST) [12]. WREN includes ability to locate potential compo-
nents from component distribution sites, to evaluate the identified components for
suitability to an application and to incorporate selected components into application
design models. It is also possible to assemble selected components into the applica-
tion. However, it does not support requirements formulation, pattern reuse, “glue-
code” generation or negotiation, and provides no support for managing change. Model
driven initiatives are based on the derivation of system models from which code can
be automatically generated. They are often domain-specific and intended for develop-
ing reusable components, rather than systems from pre-existing components.

3 COMPOSE Method

COMPOSE (illustrated in Fig. 1) embodies a cyclical development process that
integrates verification into every part of the process to ensure that there is an
acceptable match between components and the system being built. It also includes
negotiation in each cycle as an explicit recognition of the need to trade-off and accept
compromise in successful component-based system development. This ensures that
even the earliest stages of system development are carried out in a context of off-the-
shelf component availability, user requirements and critical architectural concerns.
The development phase comprises four stages: requirements definition, system design
(service partitioning), composition and change management. The management stage
cuts across the three early development stages. This paper is mainly concerned with

Planning and
negotiation

Discovery and
Verification

Development

Verify availability of part

Verify viability of solution

Evaluate suitability of part

Analyse architecture

Test subsystem assembly

Development agenda

Negotiation strategy

Perform regression testing

Requirements definition

Partition services

Compose system

Map services to abstract
components

Adapt abstract components

M
anagem

ent

Define system context

Identify system services

COTS
component

Web service

Service
specification

Design pattern

Design style

Parts
Repository

Fig. 1. COMPOSE Process

 An Architecture-Centric Development Environment 101

the system design and composition stages. The requirements and change management
stages are described in detail elsewhere [5,6].

The requirements process in COMPOSE identifies a set of general requirements
sources (actors and stakeholders) called viewpoints, which can be used as a starting
point for identifying viewpoints specific to the system being developed [5]. Require-
ments are negotiated according to available off-the-shelf functionality and, where
appropriate, traded to achieve the more acceptable or appropriate configuration in the
circumstances. To address the gap between need and availability, functional and non-
functional requirements are modelled as services and constraints, which represent the
mapping between “ideal” requirements and what is available from identified compo-
nents. Services are partitioned into abstract components (discussed in section 4).
However, a service is not just an expression of required functionality, but also the
result of verifying the suitability of the component selected. The flexible and imple-
mentation-independent nature of services means that the developer can explore differ-
ent black-box solutions to compose abstract components. A service specification
comprises the following elements [5]:

The verification process assumes the existence of a repository of software part
specifications (e.g. components, services and patterns). An integral toolset facilitates
the incremental verification process (see in Section 5.3). At the requirements stage,
context-based questions and logical filters are used to establish the availability and
suitability of software components and services, and the viability of a reuse-driven
solution [5]. At the design stage verification is concerned with ensuring the design
matches the system context (i.e. system characteristics, valid architectural configura-
tions and component interaction, constraints such as cost, schedule, operating and
support environments, and business) [17]. CADL allows the developer to embed this
information at different levels of abstraction in the system design, as constraints. The
CADL compiler uses the information to verify valid architectural configurations and
compositions (see example in Fig. 6).

4 Component Architecture Description Language - CADL

COMPOSE uses a constraint-based component architecture description language
(CADL) [8] to partition services into design-level components which are then com-
posed into concrete component configurations through a process of adaptation and
negotiation. It is not possible to provide a complete description of CADL in the space
of this paper; however, its key aspects are discussed. The experience of using CADL
on a real system is discussed in section 5 and 6. The CADL component model is
shown in Fig. 2. The model extends the ideas originally proposed by Ning [16], to
specify a language that explicitly supports black-box component-based development.

Required services <Parameters required by the specified service >
Behaviour <Can be described at different levels of abstraction using predicates>

Constraints <Description of constraints on service >
Search keywords< Keywords used for service discovery>

Evaluation criterion <Tests that should be carried out to evaluate an off-the-shelf component’s
conformance with specified service>

Trade offs < Aspects of original requirement not addressed by service and the possible conse-

102 G. Kotonya

Architectural
element

identifier
type

Port

Connector

glue_specification

0,1 protocol

2+ interfaces

Property

identifier
typeName
value

*

1

properties

owner

Constraint

expression

constraints *

1

association_units 1

1

Component

1..*

1 owner

sub-component 1
*

Service

identifier
type
operation_specification

container

1

1..*

interfaces

1

1

Role

identifier
assoc_rules

Port instance

Signature

operation_name

1

1..*

Parameter

identifier
type

1

*

Component instance

Connector instance 1 0..*

0..*

1

1 0..*

1

2..*

1

1+

ORB, Transaction
Monitor etc..

API, Module etc..

Binary, Executable
etc.. 1 0..*

1 0..*

1 0..*

Increasing concretization

Fig. 2. CADL Component Model

The design-time component concepts are shown in clear (abstract components) and
light grey (instances). The composition-time concepts are shown in dark grey. A
component in the model is defined as an encapsulated, distributable and executable
piece of software that provides and receives services through well-defined interfaces.
A concrete component corresponds to the runtime manifestation of a component. In
CADL, a component interface is made visible through a port. A port denotes the asso-
ciation of a port type to a component to make the services provided or required by the
component externally visible. A port specifies named operation as part of its signa-
ture. A concrete interface denotes the runtime manifestation of an interface. A con-
nector denotes the association of a connector type between the required and provided
interfaces of components. A connector type denotes an abstract specification of a style
of interaction among components. A concrete connector denotes the runtime manifes-
tation of a connector. Each port and connector is associated with a role. A role defines
the rules that a port and connector must conform to in order to be legal participants in
a connection. CADL uses subtyping by inheritance together with constraints as
mechanisms to “evolve” and “map” the specification of abstract design-level compo-
nents, ports and connectors to concrete types. Subtypes are defined according to the
following relation: ∀×:subtype • × ⊆ subtype.

4.1 Modelling Component Architectures with CADL

A CADL architecture description comprises two main sections:

• The element definition section defines ports, connectors, properties and roles used
in component definitions. Elements defined in this section are referred to by type
and identifier in component definitions.

• The component definition section defines the components used in the architecture.

 An Architecture-Centric Development Environment 103

The general structure of the architecture is as follows:

architecture ::= [comment] {element_definition |component_definition}
element_definition::= defined_type |port_definition |connector_definition |role_definition
component_definition ::= subtype_component|component_instance |concrete_component
subtype_component::=

component component_id extends component_type
component_attributes

end component_id
component_instance::=

component component_id is component_type
component_attributes

end component_id
concrete_component::=

component component_id is ComposerComponent
[comment]
{property_declaration}
interface_definition

end component_id
component_attributes ::= [comment] {property_declaration} [interface_definition]

{constraint} [connector_list] [component_configuration]
[component_mapping]

component composerComponent_id is ComposerComponent composes designComponent_id
[comment]
{property_declaration}
interface_definition
[port_correspondence]

end component_id
port_correspondence ::= {port identifier replaces identifier;} {port identifier replaces identifier;}
component_type ::= BasicComponent | identifier |ComposerComponent
interface_definition ::= interface port_id {, port_id};
connector_list ::= connectors [external] connector id {, [external] connector id };

A basic CADL component consists of a unique identifier and type. The component
may have a set of named ports, connectors, configuration, properties and constraints.
CADL defines four component types: BasicComponent, sub-type, instance, concrete.
BasicComponent denotes a primitive type from which all generic component types are
defined (by extension). A sub-type component corresponds to an extension of Basic-
Component or another sub-type. A component instance corresponds to a component
type whose parameters are assigned values. Component instances cannot be extended.
A concrete component corresponds to a runtime manifestation of a component in-
stance. The syntax for defining components is shown below:

CADL uses the “extends” keyword to evolve parameterised component types. The
“is” keyword is used to instantiate parameterised component types and “composes” to
associate component instances with concrete types. The “composes” keyword triggers
the CADL compiler to check a design-time component interface definition, properties
and the constraints defined over them against properties and interface definition in the
composer component definition for conformance. The port_correspondence property
is used to map composer component ports to designer component ports.

Component properties are specified as optional to provide the designer with
a mechanism for describing incomplete architectures. This flexibility is important
for experimentation and for incremental design. The designer can use this feature to

104 G. Kotonya

create “container” components. Constraints may represent non-functional require-
ments such as component cost, certification, memory and platform restrictions, or
dependability requirements such as security and availability. They may also represent
elements of interdependence that are introduced to allow services to meet certain
architectural considerations. Lastly, constraints may capture dependencies that are
introduced to make certain components choices acceptable in the current context.

4.2 Defining Component Interfaces

The interface section in a component definition specifies a set of ports through which
the component can interact with its environment. Ports may have properties and con-
straints defined on them that restrict the way they receive and provide services.
CADL incorporates a number of predefined ports. Ports are defined as shown below:

port_definition ::= subtype_port | port_instance | composite_port| concrete_port
subtype_port ::= port port_id extends standardPort_type

port_attributes
end port_id
port_instance ::= port port_id is standardPort_type

port_attributes
end port_id
standardPort_type ::= BasicPort|predefinedPort|identifier
port_attributes ::= [comment] [role_attached] {property_declaration} {constraint} {service}

[signature_definition;]
composite_port ::= port port_id [is |extends] compositePort_type

[comment]
[port_membership;]
{property_declaration}
{constraint}

end port_id
concrete_Port::=

port port_id is ComposerPort composes port_id
[comment]
{property_declaration}
role_name

end component_id
predefinedPort ::= RoutineCall|RoutineDef|RPCCall|RPCDef|StreamIn

|StreamOut|Notify|Listen|FileWrite|FileRead
role_attached ::= role identifier;
compositePort_type ::= CompositePort|identifier
port membership ::= portset port id{; port id}

4.3 Component Configuration

The configuration section in a component definition specifies the internal structure of
a component by specifying the nature of its composition. A component configuration
specifies the components that are used to construct the parent component, the connec-
tors used to link them up, and the ports participating in the connections. It also speci-
fies the desired constraints on the components making up the configuration. CADL
connectors follow a similar definition to ports. In addition, connectors can generate
“glue code” using introspection and “glue-code” specification.

 An Architecture-Centric Development Environment 105

component_configuration ::= configuration {use_list} {connection} {constraint}
use_list ::= uses [external] component_id {, [external] component_id };
connection::= connects [external] (self| component_id). identifier to (self| component_id). identifier

using identifier;

4.4 Constraint Language

CADL incorporates an extensible constraint language to support service partitioning
and component verification processes. Constraints in CADL are treated as required
conditions that can be associated with properties of all the basic architectural elements
and configurations. They are used to define desired component properties and accept-
able interactions between components. The universal (for all) and existential quanti-
fiers (there exists) are used to introduce global constraints that can be scoped.

constraint ::= requires [global] logical_exp |if_statement | quantifier_exp;
logical_exp::= [!] boolean_exp {logical_operator [!] boolean_exp}
boolean_exp ::= expression boolean_operator expression|component_part| “(” logical_exp “)”
expression ::= non_num_literal | arithmetic_expression {arithmetic_operator arithmetic_expression}
arithmetic_expression ::= component_exp| numeric_exp|“ (“ expression “)”
component_part ::= identifier {. Identifier}
component_exp ::= component_part | “(” component_exp “)”
numeric_exp ::= numLiteral | “(” numeric_exp “)”
if_statement ::= if logical_exp then logical_exp
quantifier_exp ::= (forall | thereexists) declaration_list : predicate_exp
declaration_list ::= identifier var_type {, identifier var_type}

var_type ::= component | port | connector
predicate_exp ::= logical_predicate_exp :: logical_predicate_exp | logical_predicate_exp
logical_predicate_exp ::= [!] boolean_predicate_exp {logical_operator [!] boolean_predicate_exp}
boolean_predicate_exp ::= expression boolean_operator expression

| component_exp [not] in array_identifier | component_part | “(” logical_predicate_exp “)”
array_identifier ::= array
simple_value ::= non_num_literal|numLiteral
non_num_literal::= “null”|date_Literal|char_Literal |string_Literal|boolean_Literal
identifier_list ::= identifier {, identifier}

Examples of CADL constraint statements include:

1. requires forAll c component: (c.confidence >= 80);
2. requires forAll c component: (c.type= “IE”):(c.version >=5);
3. requires thereExists p port: (p.portSignature = “in: int, string out:int”)
4. requires forAll c component: (c.identifier in [id1, id2, id3]): (c.version>5))
5. requires forAll c component: (c.identifier in [id1, id2, id3]): (c.id1= “web service” & c.id2=

“custom” & c.id3= “COTS component”))
Explanation:
1. Requires that all components have a minimum confidence level of 80 (in percent terms). Confi-

dence level is an organizational measure of the reliability of a component. This is likely to vary
with organization and application

2. Requires that all components of type “IE” be version 5 or greater.
3. Requires that at least one port have the signature: “in: int, string out: int”.
4. Requires that all components in the collection be of version greater than 5.
5. Requires that: component id1 be a web service, component id2 be a custom component and

component id3 be a COTS component

106 G. Kotonya

5 Developing with COMPOSE

The development process in COMPOSE follows two modes:

 Graphical. This mode allows the developer to define and model applications using
an extended UML graphical notation. The definitions can be automatically trans-
lated to syntactically correct CADL statements.

 Textual. An editor provides facilities to ease the writing of correct syntax (key-
words colouring, templates, etc.). In this mode, the compiler verifies both syntactic
and semantic correctness.

The toolset (Fig. 3) maintains dynamic synchronization of both representations
making it possible to switch between the two.

 COMPOSE Process

COMPOSE Tools

Modelling tools

Repository

Maintenance

Deployment

Composition

Design

Requirements

Services

External
Tools

C
A

D
L

Change &
Impact

Query
facilities

External
Repositories

COTS
Patterns

Fig. 3. COMPOSE Tool Architecture

The tools are distributed as three independent applications that share information
via the repository:

 Admintools: These are utilities for repository management. The repository con-
tains all the elements used in application development (components, services, ar-
chitectures, etc.) as well as the knowledge gained during their development (intel-
lectual assets). Every component is catalogued in the repository prior to its use in
an application. Basic properties are predefined in the repository but the administra-
tor can extend these to include specific business objectives. The repository is XML
based and intended to communicate easily with other repositories. In addition, a
package importer wizard allows to the administrator to automate the introduction
of commercial software components specified according to existing standards (e.g.
CCM) or standards defined by the administrator

 VPManager: Allows the developer to elicit requirements for a proposed system
and specify them as services.

 Modeller: Allows the developer to model, verify, compose, deploy and manage
component architectures. The modeller uses CADL and supports both a graphical
and textual expressions of the system architecture.

5.1 Case Study

This case-study describes the results of a pilot project to extend a legacy system for a
freight company to support an independent tracking and tracing system for one of

 An Architecture-Centric Development Environment 107

their large customers. The existing tracking and tracing reporting system ran on an old
VAX mini-computer. It only allowed the freight company customer service represen-
tatives to identify the delivery status of customer shipments on a booking by booking
basis. If a customer provided the customer service representative with a particular
booking reference, then they could use the existing system to identify whether or not
it had been delivered. However, this type of reporting system did not adequately
address the needs of the freight company’s larger customers. Although the report
consolidated all relevant customer information it still did not allow freight company
customer representatives to answer questions responsively. To do this the report had
to be imported into Microsoft ExcelTM where a customer service representative could
use Microsoft Excel’s query tools.

This short-term solution overcame the limitations of the freight company’s exist-
ing tracking and tracing reporting system. However, it failed to address two key
problems:

1. The consolidated report was based on information that was a day old.
2. The customer service representatives had to wait 5 to 10 minutes every morning to

load and format each customer’s consolidated report in Microsoft Excel. A better
solution was to provide a system that generated an up-to-date consolidated web-
based report on demand. The customer service representatives could then produce
the report at any time during the day by selecting the appropriate customer link.

The next sections describe a step-by-step process of how COMPOSE was used to
extend the freight customer report system to support these requirements. The ex-
tended functionality is referred to as the Tracker Report system.

5.2 Defining Tracker Report Requirements

The first step in extending AS Freight’s legacy system is defining the Tracker Report
system context by identifying the viewpoints (domain entities) associated with it.
Viewpoint requirements are realised by components through the service mapping
process. Fig. 4 shows the viewpoints identified for the Tracker Report system and
some of their requirements (left pane).

Fig. 4. Requirements definition in COMPOSE toolset

108 G. Kotonya

These requirements are associated with a number of services and constraints (right
pane). The SoftwareComponent viewpoint represents the legacy system. It is impor-
tant to mention that complete requirement descriptions include non-functional re-
quirements [5]. Requirements ranking and negotiation process supported by
COMPOSE are not shown in this paper.

5.3 Tracker Report System Architecture

The COMPOSE architectural design process starts with the partitioning of service
descriptions into logical sub-systems. The process requires that all specified services
be associated with either abstract or concrete components. Priority is given to essen-
tial services as these determine the viability of the COTS-based solution. COMPOSE
supports the process of service groupings by providing several architectural styles that
can be used as a starting point. CADL provides support for describing, verifying and
composing abstract components. It is not possible to discuss the detailed description
of the Tracker Report system design in the limited space of this paper. However, I
will provide enough description of the case study to demonstrate the power of
COMPOSE.

Architectural styles provide a good starting point for partitioning services. Fig. 5
shows the result of the using a 3-tier web architecture style to partition the DBMS,
Maintainability and UserServices service. The design shows the concrete MS Excel
component that already exists on the user viewpoint’s client machine along with the
unspecified Web Browser that will act as the container for the MS Excel report. The
service responsible for generating the formatted report is the
Data_Enquiry_and_Formatting service. In order to provide this service, a component
has to be created that will read data from the DBMS and format it so that it can be dis-
played as an Excel document within the browser.

The web server must be able to activate individual instances of the Excel applica-
tion. Three COTS component options were evaluated for the server: Microsoft’s Ac-
tive Server Page, HTML page and an ActiveX object.

The ActiveX object was found to provide the best solution because it registered
itself on the user machine as a compiled in-process component allowing the web
server to transparently activate instances of the Excel application. As the ActiveX

Fig. 5. System design with ActiveX component

 An Architecture-Centric Development Environment 109

component does not exist at this stage of the logical design it is modelled as an ab-
stract component. The abstract component needs to have at least one DCOM output
port so it can be called from the web browser page and at least two input ports (one
DCOM input port for calling the Excel methods and one DCOM port for accessing
the database’s data). The abstract component is labelled Abstract_2Calls_DCOM.
Once the Abstract_2Calls_DCOM component has been inserted into the modeller it
can be linked to the Abstract_DB_Client (i.e. the obtained data will inserted into an
Excel worksheet on the client computer prior to any formatting) and to the Excel
component as shown in Fig. 5.

Mismatches between design component interfaces are verified and flagged by the
CADL compiler. For example, signature mismatches between connected ports. Fig.6
is an example of a design-time verification report (in addition other errors, the Excel
component has been deleted in this example).

Fig. 6. Example of design-time verification

To address this problem, COMPOSE provides the designer with a tool to create
glue-code connectors. The tool uses introspection to generate a basic connector
whose internal logic can be modified to provide additional functionality.

5.4 Composing Components

The COMPOSE toolset provides four different ways to compose abstract compo-
nents:

• Searching. This option uses a constraint-based query editor to help the developer
locate suitable candidate components from the repository

• Existing replacement. This option uses the developer’s existing replacement
knowledge to facilitate rapid composition realisations

• Private container. This option replaces an abstract component with an empty con-
tainer. To complete the composition, the maintainer must add components to it

110 G. Kotonya

• Pattern. This option provides the maintainer with a list of patterns that implement
the abstract component service.

The CADL compiler verifies that the design is correct and that all the services are
correctly associated with concrete components. The toolset allows the maintainer to
create competing compositions to explore different solutions. Fig. 7 shows the com-
posed system.

Fig. 7. Composition for the System

The toolset allows the developer to specify hardware deployment blocks needed
for the different platforms that make up the legacy and extended system. Different
producers ship commercial components in different formats (.jar, .war, .cab, .tgz etc)
according to the intended target environments. The format of the assembly depends
on the target environment (EJB, COM+, CCM, .NET etc). The deployment blocks
generated for the Tracker Report System are shown in Fig. 8.

Fig. 8. Hardware deployment blocks for Tracker Report System

 An Architecture-Centric Development Environment 111

5.5 Traceability and Change Impact Analysis

It is recognized that Component-based systems generally exhibit structural degrada-
tion making it difficult to assess the impact of change; they also exhibit more trouble-
some incompatibilities. This means that the degradation is likely to manifest itself in
the form of locally implemented patches, wrappers and increasingly complex "glue
code". Fig. 9 shows how the COMPOSE impact analysis tool can be used to trace and
visualise change impact from requirements through to components. The impact analy-
sis shows, for example, that the UserServices service is currently associated with one
abstract component called Abstract_WebBrowser (5th column, 3rd from top). In addi-
tion, however, the impact analysis shows that Abstract_WebBrowser is required to
implement MS Excel, at specified cost and response time.

Fig. 9. Impact traceability

6 Conclusions

This paper has described an architecture-centric development method for black-box
component-based systems. COMPOSE incorporates a mechanism for defining user
requirements and a novel means for mapping “ideal” requirements to available com-
ponent functionality. COMPOSE provides incremental support for modelling and
evolving abstract component architectures to concrete systems. The process is sup-
ported by an extensible architecture description language, CADL, which provides
support for searching and verifying plug-compatible components and other design
artefacts. COMPOSE also provides support for impact analysis and the deployment of
the composed system. The following section assesses the case study against the chal-
lenges outlined in section 2.

• Component discovery and verification. COMPOSE supports an extensible reposi-
tory of well documented components, connectors services, patterns, architectural

112 G. Kotonya

styles, workflow information and other reusable artifacts. Patterns and styles were
frequently used in developing the legacy system extension to save time and en-
hance productivity. COMPOSE supports component and architecture verification
through CADL.

• Balancing need and availability. COMPOSE provided us with an effective and
practical mechanism for defining the Tracker Report system context through view-
points and services. COMPOSE uses a predicate system to automatically match re-
quirements with component properties and a process of negotiation [5].

• Architecting the system. In order to support the design of the Report Tracker sys-
tem a mechanism was needed for mapping its requirements to off-the-shelf com-
ponents and for defining its architecture. The mapping process was provided
through services. Services served three important purposes:
o they were derived from viewpoint requirements, hence provided a link to ini-

tial Tracker Report system formulation
o they provided the basis for modelling and deriving test cases for the Report

Tracker requirements. A service can be specified in a variety of notations
o they were the basis for partitioning the Tracker Report system into a set of ab-

stract components.
o CADL provided the means for partitioning services into components.

• Supporting diversity. COMPOSE and its toolset allowed creation of competing
compositions for the Tracker Report system. This is essential for addressing archi-
tectural, platform and implementation differences. However, COMPOSE provides
only limited support for hybrid compositions.

• Managing change. Traceability is central to informed system evolution. In
COMPOSE, services provided an efficient vehicle for documenting change deci-
sions for the Tracker Report system by linking different development activities.
They achieved this by providing a common concept for mapping requirements to
components, documenting the system design and ensuring links between architec-
tural design and later composition

COMPOSE represents a genuine attempt to address the problem of lack of practi-
cal environments for developing systems from black-box components. Initial
thoughts, based on the enhancement of the legacy system are that COMPOSE is an
improvement on other development approaches. However, further improvements to
the approach are needed if it is to address complex development problems, particu-
larly hybrid development. We are currently exploring ways to:

• provide productivity improvement aids for the maintainer
• provide better support for impact analysis. In particular we are exploring ways to

support the visualization of quantitative “what if” analysis under conditions of un-
certainty that allow designers and maintainers to develop and change scenarios to
assess the impacts of different design and changes options

• provide interoperability support with other analysis tools
• provide support for hybrid system development, in particular we are exploring how

CADL can be extended to support the dynamic aspects of service composition and
integration in hybrid architectures.

 An Architecture-Centric Development Environment 113

Acknowledgements

I am grateful to the EU IST Programme for funding the ECOADM IST-1999-20771
project on which this work is based. I am also grateful to our project partners for their
contributions.

References

1. Heineman, G., Crnkovic, I., Schmidt, H.W., Stafford, J.A.: Component-Based Software En-
gineering. In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.A.,
Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 14–15. Springer, Heidelberg (2005)

2. Ravichandran, T., Rothenberger, M.A.: Software reuse strategies and component markets.
Communications of the ACM 46(8), 109–114 (2003)

3. Kim, S.D.: Lessons Learned From A Nationwide CBD Promotion Project. Communica-
tions of the ACM 45(10), 83–87 (2002)

4. Voas, J.M.: The Challenges of Using COTS Software In Component-Based Development.
Computer 31(6), 44 (1998)

5. Kotonya, G., Hutchinson, J.: A Service-Oriented Approach for Specifying Component-
Based Systems. In: ICCBSS 2005. LNCS, vol. 3412, pp. 150–162. Springer, Heidelberg
(2007)

6. Kotonya, G., Hutchinson, J.: Managing Change in COTS-based Systems. In: Proceedings
of 21st IEEE International Conference on Software Maintenance (ICSM), September 25-
30, pp. 69–78 (2005)

7. Luer, C., Rosenblum, S.D.: WREN an environment for component-based development
ACM. SIGSOFT Software Engineering Notes 26(5), 207–217 (2001)

8. Kotonya, G., Onyino, W., Hutchinson, J., Sawyer, P.: Component Architecture Description
Language (CADL). Technical Report, CSEG/57/2001 Computing Department. Lancaster
University (2001)

9. van den Brand, M.G.J., Heering, J., de Jong, H.A., de Jonge, M., Kuipers, T., Klint, P.,
Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser, E., Visser, J.: The ASF+SDF
Meta-Environment: a Component-Based Language Development Environment. Computa-
tional Complexity, 365–370 (2001)

10. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. O’Reilly, Sebastopol (2005)
11. Pilskalns, W., Williams, D., Andrews, A.: Defining Maintainable Components in the De-

sign Phase. In: Proceedings of 21st IEEE International Conference on Software Mainte-
nance (ICSM), September 25-30, pp. 49–58 (2005)

12. Volgyesi, P., Ledeczi, A.: Component-based development of networked embedded appli-
cations. In: Proceedings of 28th IEEE Euromicro Conference on Component-Based Soft-
ware Engineering, September 4-6, pp. 68–73 (2002)

13. Vigder, M., Gentleman, M., Dean, J.: COTS Software Integration: State of the Art. Insti-
tute for Information Technology, National Research Council, Canada (1996)

14. Morisio, M., Seaman, C.B., Basili, V.R., Parra, A.T., Kraft, S.E., Condon, S.E.: COTS-
based software development: Processes and open issues. Journal of Systems and Soft-
ware 61(3), 189–199 (2002)

15. Hutchinson, J., Kotonya, G.: A Review of Negotiation Techniques in Component-Based
Software Engineering. In: Proceedings of 32nd IEEE Euromicro Conference on Compo-
nent-Based Software Engineering, pp. 152–159 (August 2006)

16. Ning, J.Q.: A Component Model Proposal. In: Proc. of 2nd International Workshop on
Component-Based Software Engineering, pp. 13–15 (May 1999)

17. Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architectural description from un-
der the technology lamppost. Information and Software Technology 49(1), 12–31 (2007)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 114–130, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automating the Trace of Architectural Design Decisions
and Rationales Using a MDD Approach

Elena Navarro1 and Carlos E. Cuesta2

1 Department of Computing Systems, University of Castilla-La Mancha,
Campus Universitario s/n, 020071, Albacete, Spain

enavarro@dsi.uclm.es
2 Dept. Computing Languages and Systems II, Rey Juan Carlos University,

C/ Tulipán s/n. 28933 Móstoles, Madrid, Spain
carlos.cuesta@urjc.es

Abstract. The impact of architecture is not only significant in the final structure
of software, but also in the development process. Architecture itself is assem-
bled by a network of design decisions (DD) composing a design rationale. Such
rationale has often been neglected; however it is essential to deal with future
change. This is also the role of traceability, the crosscutting relationship de-
scribing the evolution of software. The methodology ATRIUM provides the
method to manage traceability, by using a Model-Driven Development (MDD)
approach where every model element maintains links to related elements in
previous and further stages. This proposal defines how these links have been
exploited to support the tracing of DDs and their accompanying design ration-
ales (DRs), and study their propagation. We also present how ATRIUM tools
support this proposal by introducing DD/DRs and their traceability links from
requirements to the target architectural model. These are automatically gener-
ated by M2M transformations, avoiding the error-prone task of managing them
by hand.

Keywords: Design Decision, Design Rationale, Model-Driven Development,
Model-To-Model Transformation, CASE Tool, Traceability.

1 Introduction

Almost two decades have already passed since Perry and Wolf wrote their seminal
paper [27] on the foundations of Software Architecture, an event which is considered
as the beginning of the modern age of Software Architecture. Already in this pioneer
paper, Perry and Wolf defined architecture as a model composed of elements, form,
and rationale. The first item refers to the description of components and what would
be later defined as connectors; the second item refers to constraints in their properties
and relationships. Both of them have been integrated into practice long ago; but the
third one has often been neglected. Rationale was defined as the motivation for the
choice of style, form or elements, which explains why this choice satisfies the system
requirements; but it has been scarcely considered until recently.

 Automating the Trace of Architectural DD and Rationales Using a MDD Approach 115

Just four years ago, a number of researchers including Bosch [1] highlighted this
fact, and stressed the importance of overcoming this drawback. They noticed that
many architectural designs still lack such an explanation, and that this limitation is a
factor hindering further spreading and improvement in the area. They advocate for the
insertion of additional first-class assets in architecture description, which explicitly
document design decisions (DDs) being made.

This emphasis on the management of architectural knowledge has quickly achieved
a great popularity, not only within the specific field but also outside it [10]. Much of
the research in this topic has focused on the internal structure of design assets. For
instance, for every asset we can at least separate the decision itself (DD) from the
rationale (DR) for this decision. But their external (compositional) structure is even
more interesting. The composition of the set of individual DD/DRs builds up the
system’s global rationale; and the structure of this architectural rationale is not only
supported by the final architecture, but it also mimics the dynamic structure of the
development process itself. The perspective is much richer when it is considered; then
a decision is a choice, and this means a potential turn during the process. Every deci-
sion has the potential to be a variation point (VP) for the architecture. This also
means that traceability relationships must also be considered.

However complexity grows exponentially in this case, and then automatic support
becomes a necessity. Of course, if we are considering automation of the development
process, and traceability relationships in particular, there is an obvious connection to
MDA [28]. Model-driven tools (should) consider traceability as a basic relationship;
therefore they already provide the basis to exploit decisions as described.

The proposal outlined in this article starts from this idea –supporting architectural
knowledge with a model-driven process– and in doing so, it gathers every feature in
research mentioned so far. Indeed, traceability will be the “spine” for the architectural
rationale, which will reflect the structure of the process. This building process will be
supported by (semi-)automatic model-driven tools, and by applying MDD techniques,
one of the most important trends in current software engineering will be used.

Therefore, in this article a specific extension of ATRIUM (Architecture Traced
from RequIrements applying a Unified Methodology) [22], a methodology which uses
a model-driven approach to generate an architecture definition from the requirements,
is presented. The extended version provides an explicit support to describe decisions,
and to trace them back to requirements. This is also implemented in its specific tool,
MORPHEUS [19], which has been also extended to support the management of addi-
tional information and its inclusion within the relevant M2M transformations. The
result is explained by means of a concrete, real-world case study, and the support for
automation provided by MORPHEUS is described. Finally this is related to the state-
of-the-art in architectural knowledge proposals, and some consequences are extracted
from this comparison, such as the consistency of the whole approach.

2 ATRIUM in a Nutshell

There are many compelling reasons about why it is necessary to include traceability
throughout the process of software development process. Among them, the most ac-
cepted one is that traceability makes available the ability to deal properly with the

116 E. Navarro and C.E. Cuesta

Fig. 1. An outline of ATRIUM

change as it appears, evaluating its impact, determining the affected elements, etc.
Therefore, the exploitation of the traceability from the requirements stage towards the
architectural specification (and code) arises as one of the necessary cornerstones to
achieve the success of any software development process. In this context is where the
methodology ATRIUM (Architecture Traced from RequIrements applying a Unified
Methodology) [22] provides support. It is a methodology designed for the concurrent
definition of Requirements and Software Architecture, defining the automatic/semi-
automatic support for traceability throughout its application.

ATRIUM has been described following a MDD approach [28]. Fig. 1 shows its
three main activities (described using SPEM [29]) that must be iterated over in order
to define and refine the different Models and allow the analyst to reason about both
the requirements and the architecture. These activities are described as follows:

• Define Goals. This activity allows the analyst to identify and specify the require-
ments of the system-to-be by using the ATRIUM Goal Model [23] (Fig. 4 describes
an example). This model is based on KAOS [4] and the NFR Framework [2] pro-
posals. During the specification phase, along with an informal description of the
requirements stated by the stakeholders, the ISO/IEC 9126 quality model [11] is
used as an instantiable framework in order to provide the analyst with an initial set
of concerns of the system-to-be.

• Define Scenarios. This activity focuses on the specification of the ATRIUM Sce-
nario Model, that is, the set of Architectural Scenarios that describes the system’s
behaviour under certain operationalization decisions. A process for its description
[21] has been established, to facilitate the automatic analysis of alternatives. There-
fore, each Architectural Scenario depicts the architectural and environmental ele-
ments that interact to satisfy specific requirements and their level of responsibility

 Automating the Trace of Architectural DD and Rationales Using a MDD Approach 117

for achieving a given goal. It is worth noting that a profile has been defined to de-
scribe solutions, applying both to functional and non-functional requirements [22].

• Synthesize and Transform. This activity has been defined to generate the proto-
architecture of the specific system. With this purpose, it synthesizes the architec-
tural elements from the ATRIUM Scenario Model, building up the system along
with its structure. This proto-architecture is used as a first draft of the final descrip-
tion of the system that can be refined in a later stage of the software development
process. This activity has been defined by applying Model-To-Model Transforma-
tion techniques (M2M, [3]), specifically, QVT Relations [24]. The advantages are
twofold. First, the Architectural Style selected during the Define Goal activity can
be automatically applied so that the constraints imposed by the Style are satisfied.
Second, the analyst can generate the proto-architecture he/she deems appropriate
for his/her purposes.

It must be pointed out that ATRIUM is independent of the Architectural Metamodel
used to describe the proto-architecture. The Synthesize and Transform stage has been
defined using M2M techniques whereby the analyst only has to describe the needed
transformations to instantiate the needed Architectural Metamodel. Currently, the set
of transformations [22] to generate the proto-architecture instantiating the PRISMA
Architectural Model [25] has been defined because a compiler to generate code from
PRISMA Models already exists.

3 MDD for Tackling Design Decisions and Rationales

As stated above, ATRIUM has been defined following the MDD approach, so that
every stage of the software development process is described by establishing clearly
its associated Metamodels along with forward and backwards traceability links be-
tween them. To tackle the description of DDs and DRs, our proposal exploits these
links throughout the application of ATRIUM by means of both their incorporation in
each Metamodel and the establishment of mechanisms for their propagation through
abstraction levels, as it will be presented in the following.

Fig. 2 shows how DDs and DRs are introduced from the very beginning of the
software development process by means of its introduction at the requirement stage.
Operationalization is one of the main concepts used to describe the ATRIUM Goal
Model. An Operationalization is a description of an architectural solution, i.e., an
architectural design choice for the system-to-be to meet the users’ needs and expecta-
tions. They are called Operationalizations because they describe the system behaviour
to meet the requirements, both functional and non-functional. For this reason, two key
attributes are included while they are described: designDecision and designRationale.
The former is in charge of describing the architectural design solution and the latter
describes why this decision has been made. The Operationalizations are related to
Requirements by means of a relationship called Contribution whose main aim is to
specify how an Operationalization contributes to/prevents the satisfaction of a Re-
quirement facilitating the automatic analysis of architectural alternatives [22].

118 E. Navarro and C.E. Cuesta

Fig. 2. Traceability Links between the main meta-elements of the involved Metamodels

Fig. 2 shows that ArchitecturalScenario constitutes one of the main concepts of the
ATRIUM Scenario Metamodel. The ArchitecturalScenario is used to describe the
system behaviour associated to one or several requirements and under a certain opera-
tionalization decision. Unlike proposals about classic scenarios, Architectural Scenar-
ios specify interaction between architectural elements together with the environmental
elements which play a role in that scenario. As depicted in Fig. 2, in ATRIUM Archi-
tectural Scenarios are traced from Operationalizations by means of a relationship
known as specifiedBy, thereby stating clearly how (and why) every Architectural
Scenario is specified. This relationship is specified by the analyst whenever a new
Architectural Scenario is described, as it only emerges in the context of a specific
Operationalization. For this reason, the relationship can be easily maintained thanks
to the capabilities provided by MORPHEUS (see section 5).

Finally, at the Architectural Metamodel level, both DDs and DRs should be
considered, to properly evaluate the impact of any change on the Architectural
Specification. Therefore, the PRISMA Architectural Metamodel has been modified to
introduce both of them at this level of abstraction. Fig. 2 shows a partial view of
the PRISMA Metamodel, which has been extended to include a new element, the
DesignAsset, in order to describe the DD and DR associated to each Architec-
turalElement. However, as stated above, this approach can be applied to any Architec-
tural Metamodel. Another advantage of the proposal is that the DesignAsset could
be linked to any other architectural element, when considered necessary, just by

 Automating the Trace of Architectural DD and Rationales Using a MDD Approach 119

establishing properly the relationships inside the Metamodel and applying the process
described in the following.

Fig. 2 also shows that DesignAsset has a relationship traceFrom, used to determine
which ArchitecturalScenario originated the description of the Architectural Element.
However, the task of specifying the relationship traceFrom could be cumbersome and
error-prone if it was performed by hand. This has motivated the development of a
proposal based on the use of M2M transformations, facilitating that both the trace-
From relationship and the DesignAsset itself can be automatically generated in the
target Architectural Model, as described in the following section.

3.1 Model-to-Model Transformations to Deal with Traceability Links

As indicated in Fig. 1, the Synthesize and Transform activity in ATRIUM is in charge
of the generation of the proto-architecture. Considering that the Goal Model and the
Scenario Model must be transformed into the target Architectural Model, the use of
M2M transformation techniques emerges as the most adequate approach to describe a
solution for this activity. Several existing languages, such as QVT [24] or GReAT
[31], have been proposed as solutions to define M2M transformations that increase
the productivity, capture traceability relationships between models, improve main-
tainability by consistently describing the traceability throughout the lifecycle, etc.
These languages were analyzed in [22], where their suitability for ATRIUM was
studied by considering their support for several required features, such as the capabil-
ity to incrementally update the target Architecture in response to the evolution in the
Scenario and the Goal Model, or the support for automatic tracing between the source
and target models. This analysis led us to select QVT Relations as the most adequate
language to describe the required transformations.

To describe how our transformation works, we have to introduce briefly the way in
which QVT Relations operates. In this language, a transformation is defined between
candidate models and specified as a set of relations. A candidate model is any model
that conforms to some Metamodel referenced in the transformation declaration. Every
relation describes the constraints to be satisfied by the elements of these candidate
models; all relations must hold in order to successfully apply the transformation.

Table 1. Declaring the Transformation to Generate the Architectural Model

transformation ScenariosToArchModel(goals: GoalMetamodel,
 scenarios: ScenarioMetamodel, archModel:ArchitecturalMetamodel)

Consider, for instance, the transformation in Table 1, which generates the target
Architectural Model from two inputs: the Goal Model and the Scenario Model. This
transformation has three candidate models, namely: goals, a candidate model con-
forming to the ATRIUM Goal Metamodel; scenarios, a candidate model conforming
to the ATRIUM Scenario Metamodel; and finally archModel, a candidate
model which must conform to the target Architectural Metamodel (in our case, the
chosen metamodel is that of PRISMA). Specifically, we are going to focus here on

120 E. Navarro and C.E. Cuesta

Fig. 3. Describing a Relation to Propagate the Design Decisions and Rationales

how Operationalizations and ArchitecturalScenarios are used in the generation of
both DesignAssets and the traceFrom relationship in the target Model1.

The structure of a relation is better exposed with an example. Consider the one in
Fig. 3, SystemFrame2System, one of the relations which compose the transformation
described in Table 1. This one was defined to generate “Systems” in the target Archi-
tectural Model. Every relation is defined by two or more domains (three in this case),
identified by typed variables which must match some of the Metamodels in the trans-
formation declaration. In Fig. 3, these are the same which were defined in the exam-
ple in Table 1, namely: goals, scenarios, and archModel.

The relation imposes a pattern on every domain, describing the constraints to be
satisfied by the elements of the involved model. When the elements contained in each
candidate model simultaneously fulfill their corresponding patterns, then the matching
happens and the relation is held.

In the example in Fig. 3, three patterns are described, using QVT graphical syntax:
one for every domain (goals, scenarios, archModel). For instance, in the goals do-
main the relation establishes that every Operationalization (i.e. all elements of type
Operationalization) must be retrieved to be used. But the pattern also imposes the
condition which defines that the code of these Operationalizations gets bound to the
variable cod. Simultaneously, in the scenarios domain, every Architectural Scenario

1 Interest reader is referred to [22] to obtain the whole description of the transformation.

 Automating the Trace of Architectural DD and Rationales Using a MDD Approach 121

(i.e. all elements of type ArchitecturalScenario) has a variable specifiedBy which is
bound to the same variable cod. Then, the dotted line in Fig. 3 highlights the matching
which might happen between both domains; this means that only Operationalizations
and Architectural Scenarios having the same value in these attributes will be used
when the relation (or its container transformation) is applied. A similar pattern is also
defined for the archModel domain, as can be seen in the Figure. In this case, not only
the attribute code (which is again bound to the variable cod), but the rest of the attrib-
utes is also bound to those in the Operationalization.

The lower half of Fig. 3 contains the when clause, which describes a condition that
must be held before the relation can be successfully applied. Within this example, the
when clause contains the code required to invoke some additional relations.

In QVT Relations, the transformation can be defined either to check the models for
consistency or to enforce the consistency by modifying one of the models, selected as
target. Therefore, every pattern can be evaluated using two different modes: check-
only (marked with a C in Fig. 3), that just checks if the pattern is satisfied, reporting
an inconsistency otherwise; and enforce (marked with an E in Fig. 3) which first
checks whether the pattern is satisfied, and then creates, modifies or erases elements
in the target model, as it is necessary to ensure consistency.

In the example in Fig. 3, we can observe that domains goals and scenarios are
marked as checkonly but, on the contrary, archModel is marked as enforce. This
means that when archModel is the target model, the proto-architecture is generated.
The execution of the transformation checks whether there are elements in the target
model that satisfy the relations, that is, the patterns described for its domain. If that
was not the case, elements in the target model will be created, deleted or modified to
enforce the consistency. This allows the analyst either to generate the proto-
architecture, or to check whether inconsistencies emerge between the generated proto-
architecture, the Goal Model, and the Scenario Model. Therefore, information about
our DDs and DRs is automatically registered for Architectural Elements as the target
Architectural Model is generated. For instance, in our proposal, every System in the
target Architectural Model will be related to its corresponding DesignAsset, because
the relationship specifiedBy between them will be automatically generated, as it has
been defined in the relation described in Fig. 3.

Another advantage of using QVT Relations is that the language itself automatically
generates a Trace Class for every relation, facilitating the registration of mappings
between the elements in the involved Models, for instance those between elements in
the proto-architecture and their corresponding elements in the scenarios and goals
models. This means that the already described traceFrom relationship (see Fig.2) is
automatically generated when the transformation is applied. This makes possible to
easily maintain the traceability, both forward and backwards. Therefore, if some DD
changes at the requirements stage, the set of architectural elements which will be
affected can be determined automatically, and therefore the Architectural Model can
easily be maintained up-to-date.

4 Case Study: Operationalizations in a Teachmover Robot

The proposal has been validated in a real case study associated to the European pro-
ject EFTCoR (Environmental Friendly and cost-effective Technology for Coating

122 E. Navarro and C.E. Cuesta

Removal) [9]. This project aims at designing a family of robots capable of performing
maintenance operations for ship hulls. The system includes operations such as coating
removal, cleaning and re-painting of the hull. Among the subsystems constituting the
EFTCoR platform, our case study focuses on the Robotic Devices Control Unit
(RDCU), which interacts with other robotic devices to obtain the required information
to control the different devices (positioning systems and cleaning tools) to be used for
maintenance tasks. The RDCU is in charge of commanding and controlling, in a co-
ordinated way, the positioning of devices together with the tools attached to them.
However, the use of a real system would be too complex in order to exemplify this
proposal, so TeachMover [33], a simplified version of the EFTCoR will be used in the
remainder of this article. The TeachMover is a durable, affordable robotic arm used
for teaching robotic fundamentals. It has been specifically designed to simulate indus-
trial robotic operations. Similarly to what was said for the EFTCoR, this work focuses
on the RDCU in charge of controlling this robot.

G O A .1 R D C U be su itab le fo r the
user nee d s

G O A.2 R D C U a llow s
w o rking ope ra tion

AN D

...

...

GO A.10 R D C U co ord in a te
po sit ing system s

AN D

G O A .9 R D C U a llo w s cle a n in g
o pera tio n s

O R

......
G O A .1 9 R D C U a llo w s m o ve m e nts in a

p recise w a y

G OA .1 8 R D C U a llow s
m o vem e nt a cro ss w id e are a s

OR

R E Q .6 M ove w ork
p o in t to a ta rg e t fro m

its cu rr en t p osition

R EQ .8 M ove w ork p o in t to
a ta rge t fro m the o r ig in o f

th e co o rd in a te syste m

R EQ .9 M ove jo in t a
g iven de lta in cre m e n t

fro m its cur ren t p osit io n

AN D

OR

+
+

O PE .1 0 O per a tion a l in crem e nta l
m ove m e nt b y T each m o ve r C on tro l

accessin g R U C -M U C -SU C
O PE .3 O pera tion a l m ovem e nt o f th e w o rk

p o in t from cu r re n t po sitio n app lying p ro p er ly
th e A C R O SET style

+ +

++

......

......

O PE .2 O pe ra tion a l m o ve m ent o f th e w o rk
p o in t fro m cur ren t po sit ion w itho ut a pp lying

som e constra in ts o f A C R OS ET

+++ + - -

R E Q .4 R D C U sup po r ts
d if fe re n t m a in te n an ce

o pera tio ns

...

Fig. 4. Partial description of some of the EFTCoR requirements

Fig.4 shows a partial view of the Teachmover requirements that have been de-
scribed using the ATRIUM Goal Model during the Define Goals activity. It depicts
part of its functional requirements by refining the goal Suitability. It can be observed
that the RDCU is expected to coordinate its movement, allow different cleaning op-
erations in specific areas, and catch objects. These goals are refined into several goals,
and finally into requirements. Fig. 4 also illustrates an example of how the require-
ment “REQ 6” is refined into two Operationalizations, namely:

• “OPE.2 Operational movement of the work point from current position without
applying some constraints of the ACROSET Style”. The DD described in this

 Automating the Trace of Architectural DD and Rationales Using a MDD Approach 123

Operationalization is: “To perform the operational movement by allowing the di-
rect access between systems RUC and SUC”. The associated DR is: “The direct
access facilitates an advantage in terms of the number of operations to be per-
formed, because they are not only limited to the active tool”;

• “OPE.3 Operational movement of the work point from current position, applying
properly the ACROSET style”. The DD described along with OPE.3 is: “To per-
form the operational movement, by means of the interaction between the systems
RUC-MUC-SUC”. The related DR is: “This alternative is compliant with the
ACROSET style; however, it exhibits problems because the number of operations
that can be performed is only limited to the active tool”.

Both the requirements and the operationalization are related by means of
contributions relationships, that denote how the solutions contribute positively and/or
negatively to meet the requirements. For example, it can be observed that the
operationalizations “OPE.2” and “OPE.3” have a positive impact on the “REQ.6”.
However, the former has a positive impact on “REQ4” whereas the latter has a nega-
tive impact. It facilitates the analysis of which alternatives have less negative impact
on the set of requirements. This example is used in the following to facilitate the com-
prehension of the presented work.

Associated to the Operationalization “OPE.2” an architectural scenario has been
described, depicted in Fig. 5. It can be seen that the recommendations established by
the DD have been followed, as the communication between the systems RUC and
SUC has been directly established by means of components and connectors. When
this scenario is described, the relationship specifiedBy, which defines its connection to
the Operationalization “OPE.2”, is established by the analyst that is shown as a con-
tention relation in the Model Explorer situated on the left in Fig.5.

Fig. 5. Describing in the Scenario Environment an Architectural Scenario related to “OPE.2”

124 E. Navarro and C.E. Cuesta

Once the Scenario Model has been described the activity Synthesize and transform
can be applied to generate the proto-architecture. This activity can be performed when
at least one scenario has been defined, and thanks to the incrementality feature of
QVT as new architectural scenarios are defined the proto-architecture can be updated
to introduce the necessary changes. It is during this activity that the DesignAsset and
traceability links are generated as well. According to the example described above, a
DesignAsset will be generated in the target Architectural Model that will be related to
each one of the generated Architectural Elements; in this case, those are the elements
Robot, RUC and WristSUC. The following section describes the way in which this
activity is supported by MORPHEUS.

5 MORPHEUS: Supporting the Proposal

Nowadays, automation is becoming one of the principal means to achieve greater
productivity and higher quality products. For this reason, its introduction in this pro-
posal was compulsory, both to provide support for the meta-modelling and modelling
processes and to assist as much as possible in their description and exploitation. This
led us to the development of a tool called MORPHEUS, a graphical environment for
the description of the different models, to provide the analysts with an improved legi-
bility. ATRIUM entails three main activities, and this has caused that MORPHEUS2
has also been structured in three different environments:

• Requirement Environment [19] provides analysts with a requirements meta-
modelling work context for describing Requirement Metamodels customized ac-
cording to the project’s semantic needs. This Environment automatically provides
another work context for the description and analysis of Requirement Models ac-
cording to the active Metamodel.

• Scenario Environment [21] has been expressly developed to describe the ATRIUM
Scenario Model. This Environment facilitates both the graphical description of ar-
chitectural scenarios meeting the established requirements and their later synthesis
to generate the proto-architecture of the system being defined.

• Software Architecture Environment [26] makes available a whole graphical envi-
ronment for the PRISMA AO-ADL [25] so that the proto-architecture synthesized
from the Scenarios Model can be refined.

Fig. 6 shows the main elements integrating MORPHEUS. As can be observed, the
RepositoryManager is in charge of controlling the access to the repository where the
different Models and Metamodels are stored. Each Environment described above
accesses to the repository by using this component. Above these Environments, the
Back-End allows the analyst to access to the different Environments, and to manage
the projects he/she creates. This paper focuses on the Scenario Environment, shown in
Fig. 5, that provides access to the main functionality needed to support the proposal.

As depicted in Fig. 6, the Scenario Environment is made up by several compo-
nents. The ScenarioEditor is one these components and provides the analyst with

2 Interested readers can download a demo showing how this proposal has been put into practice

using MORPHEUS, from http://www.dsi.uclm.es/personal/elenanavarro/research_atrium.htm.

 Automating the Trace of Architectural DD and Rationales Using a MDD Approach 125

facilities for graphical modelling the ATRIUM Scenario Model. It must be high-
lighted that the graphical description of the Scenario Models was a must for the de-
sign of this component. For this reason, several graphical components were analysed
in order to select the one with more capabilities.

Eventually, as shown in Fig. 6, Microsoft Office Visio Drawing Control 2003[35]
was selected, because it allows a straightforward management, both for using and
modifying shapes. This feature is highly relevant for our purposes, because all the
kinds of concepts that are included in our Scenario Metamodel can easily have differ-
ent shapes, thus facilitating the legibility of the Model. Fig. 5 shows what
MORPHEUS looks like when the ScenarioEditor is loaded. It also shows another
element, the Model Browser, placed on the left, which allows the user to access the
Scenario Model being defined. This browser loads, automatically, the Operationaliza-
tions defined during the Define Goals activity, along with their corresponding trace
from the Requirements. In this way, the user can easily understand why the scenarios
are being defined. In addition, the stencil placed on the right provides the user with all
the concepts described in the Scenario Metamodel, so that he/she only needs to drag
and drop the relevant concept on the graphical view to perform its description in the
Scenario Model.

Fig. 6. An Overview of the MORPHEUS Architecture

Fig. 6 also shows that other component introduced in the development of the Sce-
nario Environment was SynthesisProcessor, which applies the QVT Relations using a
QVT engine called Medini [18]. With this purpose, it uses the Repository Manager to
retrieve the active Goal Model and Scenario Model in XMI, and their respective
Metamodels in ECORE. SynthesisProcessor provides Medini with them, and also
with the name of the target Architectural Model and Metamodel, generating as a re-
sult a XMI file with the target Architectural Model. Once the Architectural Model has
been generated, it can be loaded in the corresponding tool to be refined. If the user has
chosen PRISMA as the target Architectural Metamodel to be instantiated, then
MORPHEUS can be exploited to refine the Architectural Model, because it provides
functionality to load such a description.

6 Related Work

As already explained in the Introduction, the specification of architectural rationales
was an early requirement in the software architecture field, dating back to the very
first article on the topic [27]. However, even in initial approaches, when architecture

126 E. Navarro and C.E. Cuesta

was considered largely as a way to document part of the system’s design, the rationale
was soon neglected. The reason was probably that at this early stage it was perceived
basically as textual, unstructured documentation, and conceived as the kind of process
information which was too often deemed as unimportant.

However, as software systems kept growing in size and complexity, architecture
achieved ever more relevance; not only as a critical design asset, but also as a map or
blueprint which would help to provide a global perspective of the system, and also to
explain or describe the current stage during the software development process. Even
in this context, DDs were still not explicitly documented, and hence all the assump-
tions and information about the design and its evolution, the architectural knowledge,
was finally lost (“vaporized”). Indeed, if the architecture has a medium size, it is al-
most impossible to deduce the reasoning which led to the final structure, as the ration-
ales behind concrete DDs are undocumented, and get ultimately forgotten. This is
particularly unfortunate when considering evolution.

In recent times, Lago et al [16] were among the first authors in emphasizing the
need to recover and maintain this information. Their proposal was not specifically
constrained to the architectural level, but tried to include every design assumption, a
term which would include our current architectural DDs, and which hinted towards an
atomic, first-class specific module. Also, traceability was one of the reasons used to
advocate the recovery of this information; however, it was not suggested to exploit it
to provide a structure for complex DRs.

In any case, it was Bosch [1] who initiated the current interest in this topic. He was
already implying that the approach was circumscribed to the context of architecture,
and explicitly suggested to maintain this information as first-class design decisions,
introducing what now has already become a specific term. A consequence of this
separation of the rationale into small pieces is the resulting structure, which can be
described as a plexus relating the whole architecture to the high-level rationale.

Some other initial works providing suggestions for this structure include Tyree and
Akerman’s [34], which proposes an ontology from an early industrial point of view,
and the early survey by Tang, Babar et al, published in an evolved form in [32]. This
survey also defines a framework to capture architectural knowledge, expressing the
similarities between several approaches, and providing a first attempt to reconcile
them. A different ontology is proposed by Kruchten et al [15], which divide the archi-
tectural knowledge into decisions, assumptions and context. This should be supported
by tools, able to maintain also to eventually evolve this information.

Indeed, tool support has been one of the main interests in the area. There have been
essentially two major approaches. The first one consists of describing DDs with some
of the aforementioned structures, and then binding them to the architectural model, to
provide an integrated perspective [14]. The other approach also describes those DDs,
but it is more interested in defining platforms implementing strategies to share this
knowledge between actors involved in the development process [7].

Garcia et al [8] use an aspect-oriented approach to tackle the description of archi-
tecture knowledge, namely describing DDs in a separate aspect [8]. In fact, this is
reminiscent of our own approach, which also uses aspects. However, in ATRIUM
aspects are not used just to describe DDs, but for almost everything; the process itself
can be considered aspect-oriented, and in fact it covers every conceived early aspect,
both at the requirements and at the architectural level.

 Automating the Trace of Architectural DD and Rationales Using a MDD Approach 127

Falessi et al [5] propose a goal-based, scenario-driven decision model to choose
between alternatives, and to document the corresponding DR. They also detail some
potential inhibitors which could hinder its use, and provide some hints towards their
subsequent value-based approach [6]. Obviously, this has some points of contact with
ATRIUM, a consequence of both being goal-oriented. But their proposal lacks both
the automatic support and the integration within a MDD process, which provides the
traceability relationship and defines the strengths of our approach.

Our approach also has some common points with the already mentioned proposal
by Jansen and Bosch [12]. They also provide a decision model, and even an extended
metamodel which includes explicit DDs. The latter is, to some extent, similar to the
one presented in section 3. However in our own case the extension was mandatory;
otherwise new concepts would not have been explicit, and our DDs could have not
been considered inside the MDD process.

Indeed most of the similarities between these proposals and the extended ATRIUM
are casual or simply due to their common origin. In fact, in the existing literature there
are only two works with a close resemblance. In the first one, Sinnema et al [30]
suggest to exploit the variability in the architecture to support the definition of DDs.
In ATRIUM this is indeed a consequence, not the starting point; but this is still the
closest suggestion ever done to (implicitly) support DDs on top of traces.

In the second one, Mattson et al [17] remind that capturing design information is a
feature of any MDD approach; also, that architecture itself is not fully integrated into
MDA. Therefore, they provide a basic architectural framework, and then propose to
formalize design rules, which should be enforced by the MDD process. However no
more details are provided; though this is the only paper suggesting using MDD in this
context, it is far from being complete.

In fact, both Sinnema’s and Mattson’s are preliminary short papers, sketching
some interesting ideas which have not yet being exploited by further research. Indeed,
our approach fulfils many of the promises implicit in those papers; for example, in
ATRIUM traceability links can be used to define a variation point in any part of the
process, and bind it to any explicit decision; and both the architectural framework and
the exploitation of traceability within the MDD process and transformations are much
more complex than any previous suggestion.

7 Conclusions and Further Work

As just noted in the previous section, the extended ATRIUM methodology and the
tool support provided by MORPHEUS provide a support for traceability which allows
a complex and advanced framework for the definition of architectural knowledge.
From this perspective, their capabilities exceed those of any existing proposal, at least
in terms of automation, generation and tracing. The rationale is defined in a composite
structure which can be related to architecture itself, defining an elaborate network of
first-class DDs. The consequences of using this approach are also fairly unknown; it
obviously supports the definition of complex structures, but the great potential they
provide has yet to be investigated.

For instance, there is a line of research which intends to deduce undocumented
processes from their architecture [13]. To do so, they must extract the deltas between

128 E. Navarro and C.E. Cuesta

different versions, and deduce the nature of the decisions made. In our approach, this
is not necessary, even when DD/DRs have not been originally provided; instead of
defining deltas by comparing different versions, MORPHEUS can be used to generate
a whole new version starting from a single different decision. The potential to exploit
variability is enormous, but it can be also applied to specific issues like this.

Compared to other tools in the field, MORPHEUS provides a lot of facilities and
complex functionality. Most of the others try just to either describing or sharing some
static information; only a few of them try to actually integrate the information in the
process and let it play an active role [14][17][30]. This even transcends the limits of
the specific subfield of architectural knowledge, to be applied for concerns involved
in any aspect of the architectural process. In this regard, the presented approach not
only fulfils its specific purpose, but also provides a core model which can be applied
to fulfil some of the traditional requests in the architecture field.

In summary, the proposal described in this paper provides both the technology and
the methodology to define and explicitly manage architectural knowledge; this is done
in a consistent and principled way, and providing an optimal integration. But this does
not just describe a model-driven variant of a known idea, or provides a particular tool
to deal with it. In fact, the most important contribution of this paper is the outlining of
the explicit relationship to traceability, the explanation of how this provides the basic
structure for the architectural rationale, and the consequences of this approach.

Acknowledgments. This work has been funded by the Spanish Ministry of Education
and Science under the National R&D&I Program, META Project TIN2006-15175-
C05-01. Further funding comes from Rey Juan Carlos University and the autonomous
Government of Madrid under the IASOMM Project URJC-CM-2007-CET-1555.

References

[1] Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C., Morri-
son, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)

[2] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Soft-
ware Engineering. Kluwer Academic Publishing, Boston (2000)

[3] Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. IBM Sys-
tems Journal 45(3), 621–645 (2006)

[4] Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acquisition.
Science of Computer Programming 20(1-2), 3–50 (1993)

[5] Falessi, D., Becker, M., Cantone, G.: Design Decision Rationale: Experiences and Steps
Ahead Towards Systematic Use. In: SHARK 2006. ACM DL, New York (2006)

[6] Falessi, D., Cantone, G., Kruchten, P.: Value-Based Design Decision Rationale Docu-
mentation: Principles and Empirical Feasibility Study. In: 7th Working IEEE/IFIP Conf.
on Softw. Architecture (WICSA 2008), pp. 189–198. IEEE CS, New York (2008)

[7] Farenhorst, R., Lago, P., van Vliet, H.: EAGLE: Effective Tool Support for Sharing Ar-
chitectural Knowledge. Intl. J. Cooperative Information Syst. 16(3-4), 413–437 (2007)

[8] Garcia, A., Batista, T., Rashid, A., Sant’Anna, C.: Driving and Managing Architectural
Decisions with Aspects. In: SHARK 2006. ACM DL, New York (2006)

[9] GROWTH G3RD-CT-00794: EFTCOR: Environmental Friendly and cost-effective
Technology for Coating Removal. European Project, 5th Framework Program (2003)

 Automating the Trace of Architectural DD and Rationales Using a MDD Approach 129

[10] Harrison, N.B., Avgeriou, P., Zdun, U.: Using Patterns to Capture Architectural Deci-
sions. IEEE Software 24(4), 38–45 (2007)

[11] ISO/IEC Standard 9126-1, Software Engineering- Product Quality-Part1: Quality Model,
ISO Copyright Office, Geneva (2001)

[12] Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions.
In: 5th Working IEEE/IFIP Conf. on Softw. Architecture (WICSA 2005), pp. 109–120
(2005)

[13] Jansen, A., Bosch, J., Avgeriou, P.: Documenting After the Fact: Recovering Architec-
tural Design Decisions. Journal of Systems and Software 81(4), 536–557 (2008)

[14] Jansen, A., van der Ven, J., Avgeriou, P., Hammer, D.K.: Tool Support for Architectural
Decisions. In: 6th Working IEEE/IFIP Conf. on Software Architecture (WICSA 2007), p.
4. IEEE CS Press, New York (2007)

[15] Kruchten, P., Lago, P., van Vliet, H.: Building Up and Reasoning about Architectural
Knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

[16] Lago, P., van Vliet, H.: Explicit Assumptions Enrich Architectural Models. In: 27th Intl.
Conf. on Soft. Engineering (ICSE 2005), pp. 206–214. IEEE CS Press, New York (2005)

[17] Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Experiences from Representing Soft-
ware Architecture in a Large Industrial Project using Model-Driven Development. In:
SHARK/ADI 2007. IEEE DL, New York (2007)

[18] Medini, QVT Relations, http://projects.ikv.de/qvt
[19] Navarro, E., Letelier, P., Gómez, A.: MORPHEUS: tool support to tailor requirements

management to the specific project needs. Inf. & Soft. Technology (submitted, 2008)
[20] Navarro, E., Letelier, P., Ramos, I.: Requirements and Scenarios: playing Aspect Ori-

ented Software Architectures. In: 6th Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA 2007) (short paper). IEEE DL, New York (2007)

[21] Navarro, E., Letelier, P., Jaén, J., Ramos, I.: Supporting the Automatic Generation of
Proto-Architectures. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 43–58.
Springer, Heidelberg (2007) (Best poster award)

[22] Navarro, E.: Architecture Traced from RequIrements applying a Unified Methodology,
PhD thesis, Computing Systems Department, UCLM (2007)

[23] Navarro, E., Letelier, P., Mocholí, J.A., Ramos, I.: A Metamodeling Approach for Re-
quirements Specification. J. of Computer Information Systems 47(5), 67–77 (2006)

[24] OMG document ptc/05-11-01, QVT, MOF Query/Views/Transformations. Final adopted
specification (2005)

[25] Pérez, J., Ali, N., Carsí, J.A., Ramos, I.: Designing Software Architectures with an As-
pect-Oriented Architecture Description Language. In: Gorton, I., Heineman, G.T.,
Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE
2006. LNCS, vol. 4063, pp. 123–138. Springer, Heidelberg (2006)

[26] Pérez, J., Navarro, E., Letelier, P., Ramos, I.: A Modelling Proposal for Aspect-Oriented
Software Architectures. In: 13th IEEE Int. Conference and Workshop on the Engineering
of Computer Based Systems (ECBS), pp. 32–41. IEEE CS, New York (2006)

[27] Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM Soft-
ware Engineering Notes 17(4), 40–52 (1992)

[28] Selic, B.: The Pragmatics of Model-Driven Development. IEEE Soft. 20(5), 19–25 (2003)
[29] OMG, Software Process Engineering Metamodel (SPEM), Version 1.1 formal/05-01-06

(2005), http://www.omg.org/cgi-bin/doc?formal/2005-01-06
[30] Sinnema, M., van der Ven, J., Deelstra, S.: Using Variability Modeling Principles to Cap-

ture Architectural Knowledge. In: SHARK 2006. ACM DL, New York (2006)

130 E. Navarro and C.E. Cuesta

[31] Sprinkle, J., Agrawal, A., Levendovszky, T., Shi, F., Karsai, G.: Domain Model Transla-
tion Using Graph Transformations. In: 10th IEEE International Conference on Engineer-
ing of Computer-Based Systems (ECBS 2003), pp. 159–167. IEEE CS, New York (2003)

[32] Tang, A., Babar, M.A., Gorton, I., Han, J.: A Survey of Architecture Design Rationale.
Journal of Systems & Software 79(12), 1792–1804 (2007)

[33] TeachMover,
http://www.questechzone.com/microbot/teachmover.htm

[34] Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Soft-
ware 22(2), 19–27 (2005)

[35] Visio (2003),
http://office.microsoft.com/es-es/FX010857983082.aspx

Development of Fault-Tolerant Software Systems

Based on Architectural Abstractions

Patrick H.S. Brito1,�, Rogério de Lemos2, and Cećılia M.F. Rubira1,��

1 Institute of Computing – State University of Campinas (Unicamp)
{pbrito,cmrubira}@ic.unicamp.br

2 Computing Laboratory – University of Kent
r.delemos@kent.ac.uk

Abstract. The incorporation of fault tolerance into systems normally
increases their complexity, which consequently makes their analysis more
difficult. This paper discusses how architectural abstractions can be effec-
tive in developing fault-tolerant software systems. Depending on the fault
model and the resources available, different abstractions can be employed
for representing issues that are related to fault tolerance, such as error
detection, and error and fault handling. These architectural abstractions,
and their internal views, can be instantiated into concrete components
and connectors for designing fault-tolerant software architectures. Since
structural and behavioural properties associated with these abstractions
are formally specified, the process of verifying and validating software
architectures can be automated. In this paper, we show how appropri-
ate architectural abstractions and a recursive process can facilitate the
architectural modelling and analysis of fault-tolerant software systems.
The feasibility of the proposed approach is demonstrated in the context
of a critical real-time application.

1 Introduction

Fault tolerance is the ability of a system to continue its normal operation despite
the presence of faults [2]. Since fault tolerance has a global system scope, it
should be related to both architectural elements (components and connectors)
and architectural configurations. However, the incorporation of fault tolerance
into systems normally increases their complexity, making their analysis more
difficult. One way of handling the inherent complexity of fault-tolerant systems
is to adopt architectural abstractions. These are able to hide system complexity,
and provide the means for analysing how errors are propagated, detected and
handled, and how faults in the system are handled [3].

The provision of fault tolerance relies on the existence of redundancy, which
can be incorporated either implicitly or explicitly at the architectural level. An

� Supported by Fapesp/Brazil, grant 06/02116-2 and CAPES/Brazil, grant 0722-07-3.
�� Cećılia M.F. Rubira is partially supported by CNPq/Brazil, grants 301446/2006-7

and 484138/2006-5.

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 131–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

132 P.H.S. Brito, R. de Lemos, and C.M.F. Rubira

example of implicit redundancy is the usage of exception handling for support-
ing error recovery. If special care is not taken when structuring the system, the
normal and abnormal specifications can be entangled thus increasing system
complexity. Explicit redundancy is an inherent aspect of strongly-structured
systems [15], i.e., systems in which the structuring of redundancy is part of the
actual system, thus restricting the impact of faults. Examples of explicit redun-
dancy are N-version programming and recovery blocks, which are two software
fault tolerance techniques. In our previous work, we have defined an architec-
tural abstraction, the idealised fault-tolerant architectural element (iFTE), an
implicit redundancy approach based on exception handling, that provides the
means for structuring abnormal behaviour in software architectures [4,5,10]. In
that work, we have focused on the formal modelling of the architectural elements
and their configurations using B-Method and CSP, including the representation
of exception types.

In this paper, we present, first, how architectural abstractions can be effec-
tive when developing fault-tolerant software systems, applying both implicit and
explicit redundancies, and second, how a general process can enforce the role
of architectural abstractions in the specification, verification and validation of
fault-tolerant software systems. In particular, how this process is able to support
different abstractions, according to the design decisions, failure assumptions, and
availability of resources. The process will be presented in the context of two ar-
chitectural abstractions. First, the idealised fault-tolerant architectural element
(iFTE), which provides the means for promoting error confinement and sup-
porting fault tolerance at the architectural level. And second, the halt-on-failure
architectural element (HoFE), which is an abstraction that assumes crash failure
semantics, provides the basis for incorporating explicit redundancy when design-
ing fault-tolerant systems. Depending on the fault model and the availability of
resources, the appropriate architectural abstraction should be used. For obtain-
ing fault-tolerant software architectures, these abstractions are instantiated into
architectural components and connectors, which are then configured depending
on the interaction constraints dictated by their structural and behavioural prop-
erties. These architectural abstractions are presented in the context of a general
process that together with the use of formal languages allows, first, the auto-
matic verification of architectural models for identifying and removing design
faults, and second, the generation of architectural-based test cases that are able
to identify and remove implementation faults that are related to the architectural
design of the system.

The aim of this paper is to show that the appropriate architectural abstrac-
tions and a simple component-based development process can facilitate the ar-
chitectural modelling and analysis of fault-tolerant software systems. Compared
with previous publications [4,5,10], the contribution of the paper is twofold. First,
we show how architectural abstractions should be defined in terms of structural
and behavioural properties to be used to guide the specification, verification
and validation of the system, and for that, we have defined a new architec-
tural abstraction based on explicit redundancy (HoFE). Second, we show how a

Development of Fault-Tolerant Software Systems 133

recursive component-based development process can be tailored to accommodate
different types of architectural abstractions. The proposed process supports the
specification, verification and validation of fault-tolerant software architectures,
and supports the prevention and removal of faults at different stages of the de-
velopment process [3]. Since the internal structure of the architectural elements
can be recursively detailed, the software architecture can be hierarchically spec-
ified, verified and validated, which helps to master the additional complexity
associated with the provision of fault tolerance. Moreover, since the software ar-
chitecture is verified in the context of specific behavioural scenarios, it scopes the
model to be verified, which, consequently, reduces the state-space of the model,
thus improving its scalability. The rest of this paper is organised as follows.
Section 2 presents two architectural abstractions for developing fault-tolerant
systems. Section 3 discusses how architectural abstractions can be integrated
into a development process of fault-tolerant software systems. Section 4 evalu-
ates the feasibility of the overall approach using a critical real-time application
as an example. Section 5 presents some related work. Finally, Section 6 provides
some concluding remarks and future directions of research.

2 Fault-Tolerant Architectural Abstractions

The architectural abstractions presented below are used to structure software
architectures of fault-tolerant systems. The first one (Section 2.1) implements
error handling based on the exception handling mechanism, while the second one
(Section 2.2) is based on crash failure. The components are described in terms
of provided and required interfaces, to which operations are associated.

2.1 Idealised Fault-Tolerant Architectural Element

The idealised fault-tolerant architectural element (iFTE) is an architectural ab-
straction for structuring fault-tolerant systems. This abstraction enforces the
principles associated with the concept of the idealised fault-tolerant compo-
nent [2], and incorporates mechanisms for detecting errors, as well as propagating
and handling them in a structured way.

The iFTE abstraction provides an explicit separation of concerns between two
types of behaviour: (i) the normal behaviour, which realises the services of the
application, and (ii) the abnormal (exceptional) behaviour, which realises the
detection, propagation and handling of errors. In order to provide this separa-
tion, the iFTE abstraction defines four types of interfaces, which are presented
in Figure 1: (i) I iFTE PN is a provided interface that defines a set of fault-
tolerant operations; (ii) I iFTE PA is a provided interface that defines a set of
exceptions that the iFTE signals to the external environment; (iii) I iFTE RN is
a required interface that specifies a set of operations used for implementing its
normal behaviour and for handling exceptions; and (iv) I iFTE RA is a required
interface that specifies the external exceptions that the iFTE is able to handle. In
other words, while the I iFTE PN and I iFTE RN are responsible for the normal
behaviour, I iFTE PA and I iFTE RA are responsible for the abnormal behaviour.

134 P.H.S. Brito, R. de Lemos, and C.M.F. Rubira

I_iFTE_RN

I_iFTE_RA

<<iFTE>>

Idealised Fault-Tolerant Architectural Element

I_iFTE_PN

I_iFTE_PA

Fig. 1. iFTE Abstraction

iFTE External Behaviour. The external behaviour of the iFTE is defined
through behavioural scenarios related to its external interfaces. A scenario is a
sequence of events expected during the system operation [17]. In the context of
this paper, a scenario is defined as a sequence of events triggered by the request
of an operation of the I iFTE PN interface, including operation responses, other
operation requests and signalling of exceptions. A total of nine different scenarios
were identified for the iFTE. The scenarios are derived from the interaction
rules existing between the interfaces of the iFTE. These rules involve requests of
external services, the reception of the respective returns (normal or abnormal),
raising of new exceptions, propagation of received exceptions, and masking of
exceptions for tolerating software faults.

Internal View of the iFTE. The internal view of the iFTE (Figure 2) is
composed of five architectural elements: (i) the Normal component implements
the normal behaviour of the iFTE; (ii) the Abnormal component handles the
exceptions raised by the Normal component, and those propagated from the en-
vironment of the iFTE; (iii) the Provided component acts like a bridge between
the services provided by the iFTE and its environment, including the signal of
exceptions; (iv) the Required component also acts like a bridge, but between
the required services of the iFTE and its environment; and (v) the Coordinator
connector coordinates the interaction between the four internal components. It
is important to stress that the iFTE also supports the resolution of architec-
tural mismatches. This high-level adaptation is carried out by the Provided and
Required components present in Figure 2.

<<iFTE>>

Idealised Fault-Tolerant Architectural Element

<<component>>

Provided

<<component>>

Required

<<connector>>

Coordinator

<<component>>

Normal

<<component>>

Abnormal

I_iFTE_PN

I_iFTE_PA

I_P_RN

I_P_RA

I_R_PN

I_R_PA

I_A_PN I_A_PA I_A_RN
I_A_RA

I_N_PN
I_N_PA I_N_RN I_N_RA

I_iFTE_PN

I_iFTE_PA

Fig. 2. Internal View of the iFTE

Development of Fault-Tolerant Software Systems 135

The Normal component can be either implemented by scratch or by reusing
an existing component. When reusing an existing component, it is necessary to
adapt the interfaces of an existing component to the external interfaces of the
Normal component. This can be done in terms of two adapters: one responsible
for converting all the provided interfaces of the existing component, and the other
responsible for converting all the required interfaces of the existing component.

iFTE Internal Behaviour. Analysing the internal details of the iFTE, it is
possible to distinguish some interactions between the internal elements, which
characterise new scenarios when compared with the external view [4]. As a whole,
we have identified four new scenarios involving the masking of internal excep-
tions, and the other scenarios of the external view.

2.2 Halt-on-Failure Architectural Element

The halt-on-failure architectural element (HoFE) is an architectural abstraction
for the provision of error confinement and fault tolerance, and which enforces
the principles associated with the crash failures fault model [16]. When an HoFE
fails, it fails silently without producing any error signal. The HoFE abstraction
defines two types of interfaces, which are presented in Figure 3: (i) I HoFE Prov
defines a set of operations provided by the HoFE; and (ii) I HoFE Req specifies
operations required by the HoFE for implementing its behaviour. It is assumed
that an HoFE is able to detect failures on other architectural elements from
which requests operations, e.g., by associating time-outs with the I HoFE Req
interfaces.

HoFE External Behaviour. The external behaviour of the HoFE architec-
tural abstraction is defined through five basic scenarios: (i) internal normal
execution, when an HoFE provides the requested services without requesting
external services; (ii) internal erroneous execution, when an HoFE fails before
requesting external services; (iii) external normal execution, when an HoFE pro-
vides the requested services after receiving the requested external services; (iv)
external erroneous execution 1, when an HoFE fails after receiving the requested
external services; and (v) external erroneous execution 2, when an HoFE fails
after failing to receive the requested external services. Based on these scenarios,
one can describe more complex scenarios of fault-tolerant software architectures
that are based on the HoFE architectural abstraction.

Internal View of the HoFE. The internal view of the HoFE can be imple-
mented using different strategies for detecting errors, usually involving explicit

<<HoFE>>

Halt-on-failure

architectural elementI_HoFE_Prov I_HoFE_Req

Fig. 3. HoFE Abstraction

136 P.H.S. Brito, R. de Lemos, and C.M.F. Rubira

<<HoFE>>

Halt-on-failure architectural element

<<component>>

Component2

<<connector>>

Decider

<<component>>

Component1

I_HoFE_Prov I_HoFE_Req

I_C1_Prov

I_C2_Prov

I_D_

Req

I_C1

_Req

I_C2

_Req

Fig. 4. Implementing a HoFE Using Redundant Components

redundancy. Figure 4 presents a possible implementation using two redundant
components. In this approach, the error detection is conducted by the Decider,
which evaluates the results of the two executing versions of components. If there
is no consensus between them, the result is considered unreliable. Since the error
detection depends on both components, this implementation of the HoFE does
not provide internal fault tolerance and is not able to recover from internal er-
rors. However, if redundant HoFEs are used, fault tolerance can be implemented
at the architectural level.

3 A Rigorous Development Process Using Architectural
Abstractions

In our approach, architectural abstractions are first-level units, guiding the
development from the architectural specification to the implementation of
the application. We propose an iterative, recursive and incremental process
for developing fault-tolerant software architectures. Figure 5 presents an
overview of the proposed approach. Activity 1 specifies the software archi-
tecture, which can be done graphically using a CASE tool. From the system
requirements, the architect should first choose an architectural abstraction
based on the fault model of the application and the available resources for
implementing redundancy. Then, two artefacts should be specified: a UML
component diagram representing the structure of the software system, and a
set of UML sequence diagrams representing the architectural scenarios related
to fault tolerance. The scenarios are represented as sequence of events de-
scribing how a specific system behaves in presence of errors for the purpose
of tolerating faults. These specific scenarios should be consistent with those
defined for a particular architectural abstraction. Activity 2 formally specifies
the software architecture (architectural configuration and scenarios). This
activity consists on an automatic model transformation from UML (XMI
files) to B-Method and CSP. Activity 3 is the formal verification of the
architectural elements for identifying design faults related to behavioural
inconsistencies that might exist when taking as a reference the scenarios
associated with a particular architectural abstraction. So, a different set of pre-
defined properties is used according to the adopted architectural abstraction. For

Development of Fault-Tolerant Software Systems 137

example, in the context of the iFTE (Section 2.1), the verification focuses on
the consistency related to scenarios of exception handling (e.g., exception rais-
ing, exception masking). When the architectural element is based on the HoFE
(Section 2.2), the focus of verification concerns the scenarios of error detection
(e.g., same result - normal, accepted divergence - normal, unaccepted diver-
gence - abnormal). A complete list of properties verified for the iFTE abstrac-
tion is presented elsewhere [4]. Activity 4 consists of the generation of unit test
cases for assessing the implementation of architectural elements. The unit test
cases are generated based on the verified formal models of the architectural
elements.

Activity 5 verifies the architectural configuration, in order to assess the con-
sistency of interactions between architectural elements. Depending of the archi-
tectural abstractions, different properties of interest are verified. For example,
in the context of the iFTE, the focus of verification is the consistency of the
exception control flow and handlers, while the HoFE focus on the verification
of scenarios of error detection and halting. A complete list of properties veri-
fied for architectural configurations based on iFTEs is presented elsewhere [5].
Activity 6 uses the verified formal model of the architectural configuration for
generating integration test cases. This high-level integration test cases aim to
assess the existence of architectural mismatches. Beyond the mismatches regard-
ing the compatibility of required and provided operations, in the case of iFTE,
it is particularly necessary to assess mismatches of exception types at propa-
gation scenarios. Activity 7 specifies the internal structure of the architectural
elements, according to the internal structure of the chosen abstraction (see Sec-
tion 2). This activity consists on the recursive execution of the whole process
(rigorousProcess), starting in Activity 1. Recursion is used to provide scalabil-
ity in terms of an unlimited internal refinement of architectural elements. After
the system (or detailed architectural element) has been properly verified and
the test cases already generated, Activity 8 consists on the implementation of
the system, which ideally should be automatically executed. In order to provide
a mapping between the software architecture and the implementation, we sug-
gest the use of a component implementation model such as COSMOS [8]. Even
considering current trends on Model-Driven Development [20], our approach is
motivated by the fact that there are no full guarantees that the source code is
an accurate implementation of its software architecture. So, in Activity 9, the
source code should be validated against its specification through the execution
of unit and integration test cases, which were previously generated. Finally, if
faults are identified during the test execution, they should be fixed in Activ-
ity 10, otherwise, the source code is considered deployable. Since each recursion
implies in a deliverable source code artefact, the proposed process is also con-
sidered incremental for delivering the system in parts. Moreover, the iterative
characteristic of the process allows the detection of errors in different stages of
the software development, specification (Activities 3 and 5) and implementation
(Activity 9).

138 P.H.S. Brito, R. de Lemos, and C.M.F. Rubira

rigorousProcess

[for each architectural element]

8 - Implement the arch. configuration using COSMOS component model

9 - Execute unit and integration test cases

[problems during
validation] [validation OK]

10 - Fix the source code

7 - Formal specification of arch. elements internal structure

4 - Generate unit test cases:
specify input value and test oracle for provided interfaces, and

specify stubs for required interfaces.

verification
results

UML component diagram representing
the architectural configuration

Unit test cases for the arch. elements
Architectural config. in B-Method
Critical architectural scenarios in CSP

Architectural config. in B-Method
Critical architectural scenarios in CSP

Source code of the system
Report of corrections

Test results

Report of errors Deployable source code

1 - Specify the FT software architecture in UML:
choose arch. abstraction, specify arch. configuration,

and specify scenarios.

UML sequence diagrams representing
critical architectural scenarios

2 − Formal specification:
specify arch. elements using B-Method, specify arch.
configuration using B-Method, and specify scenarios

elements and configuration using CSP.

Architectural elements in B-Method
Scenarios of the arch. elements in CSP

3 − Verification arch. elements:
verify structural consistency of arch. elements, and
verify behavioural consistency against abstractions.

Architectural elements in B-Method
Scenarios of the arch. elements in CSP

Verified architectural elements in B-Method
Verified scenarios of the arch. elements in CSP

[problems during verification] [no problem during verification]

5 − Verification arch. configuration:
verify structural consistency of the arch. configuration, verify general scenarios

violations, verify specific scenarios violations, and verify specific user-defined properties.

6 - Generate integration test cases:
specify a dependency matrix between arch. elements, specify sequence for integrating

the arch. elements, and specify input value and test oracle for provided interfaces.

Unit test cases for the arch. elements

Verified architectural config. in B-Method Verified critical architectural scenarios in CSP

[for each architectural element]

Verified architectural config. in B-Method Verified critical architectural scenarios in CSP

rigorousProcess

Execute all the
process recursively

Fig. 5. A Rigorous Method for Developing Fault-Tolerant Software Architectures Using
Architectural Abstractions

4 Case Study: Mining Control System

4.1 Description of the Target System

The mining control system [18] has been adopted as a case study for showing
the feasibility of the proposed approach when developing fault-tolerant software

Development of Fault-Tolerant Software Systems 139

architectures that are based on the two architectural abstractions presented in
Section 2. In this case study, the extraction of minerals from a mine produces
water and releases methane gas. In addition to extracting minerals, the mining
control system is used to drain water from the sump, and to remove air from the
mine when the methane level becomes high. The system is composed by three
main sub-systems: MineralExtractorController, which controls the extraction of
minerals, PumpController, which controls the level of water, and AirExtractor-
Controller, which controls the level of methane. When the water reaches a high
level, the pump is turned on and the sump is drained until the water reaches
a low level. A water flow sensor is able to detect the flow of water in the pipe.
However, the pump is situated underground, and for safety reasons it must not
start, or continue to run, when the amount of methane in the mine exceeds a
safety limit. For controlling the level of methane, there is an air extractor con-
troller that monitors the level of methane inside the mine, and when the level
is high an air extractor is switched on to remove air from the mine. The whole
system is also controlled from the surface via an operator console that should
handle any emergencies raised by the automatic system.

In the following, we present two software architectures for the mining control
system that were obtained by using the two architectural abstractions previously
introduced, namely, the iFTE, which is based on exception handling, and the
HoFE, which is based on crash failure semantics. Which architectural abstraction
is more appropriate depends on the fault model being adopted, and this decision
should be influenced by the type of resources available in the system.

4.2 Description of the Case Study

The main goal of the case study was to evaluate the feasibility of the proposed
approach, as well as the advantages of employing an abstraction-based develop-
ment process. In order to analyse the advantages of the process, we have specified
the mining control system presented in Section 4.1 using the two architectural
abstractions presented in Section 2: (i) the iFTE architectural abstraction, which
is a fault-tolerant abstraction based on implicit design diversity; and (ii) the
HoFE architectural abstraction, which implements error detection through ex-
plicit design diversity. The execution of the case study is composed of three
steps. First, we have executed the process presented in Section 3 choosing the
iFTE architectural abstraction (Section 4.3). Second, we have executed the same
process choosing the HoFE architectural abstraction (Section 4.4). Finally, we
compare the two executions of the process, analysing qualitative aspects, such
as separation of concerns, control of complexity, and evolvability of the software
architecture. Sections 4.3 to 4.5 detail the three steps of the case study. Then,
Section 4.6 summarises the overall evaluation.

4.3 Choosing the iFTE Abstraction

In Step 1 of the case study, we have chosen the iFTE abstraction for specifying
the software architecture of the mining control system (Activity 1 of Figure 5).

140 P.H.S. Brito, R. de Lemos, and C.M.F. Rubira

UserInterface

MethaneLevel

MineralExtractor

Controller

AirExtractor

Controller

PumpController

MineralExtractor

Pump

AirExtractor

AirFlow

WaterFlow

WaterLevel

<<iFTComponent>>

<<iFTComponent>>

<<iFTComponent>>

<<iFTComponent>>

<<iFTConnector>>

<<iFTConnector>>

<<iFTConnector>>

<<Component>>

<<Component>>

<<Component>>

<<Component>>

I_UI

_PN

I_UI

_PA

I_UI_RN I_UI_RA

I_MEC

_PN

I_MEC

_PA I_MEC_

 RN

I_MEC_RA

I_AEC_PN

I_AEC_PA

I_AEC_RN

I_AEC_RA

I_PC_PN

I_PC_PA

I_PC_RN

I_PC_RA

I_ML

_Prov

I_AF

_Prov

I_WF

_Prov

I_WL

_Prov

I_AE_PN

I_AE_PA

I_ME_PN

I_ME_PA

I_P_PN

I_P_PA

(a)

UserInterface

MethaneLevel

MineralExtractor

Controller

AirExtractor

Controller

PumpController

MineralExtractor

Pump

AirExtractor

AirFlow

WaterFlow

WaterLevel

<<HoFComponent>>

<<HoFComponent>>

<<Component>>

<<HoFComponent>>

<<FTHoF
Connector>>

<<HoFConnector>>

<<HoFConnector>>

<<Component>>

<<Component>>

<<Component>>

<<Component>>

I_UI_

Prov

I_UI_Req

I_MEC

_Prov

I_MEC_Req

I_AEC_Prov I_AEC_Req

I_PC_Prov I_PC_Req

I_ML

_Prov

I_AF

_Prov

I_WF

_Prov

I_WL

_Prov

I_AE

_Prov

I_ME

_Prov

I_P

_Prov

(b)

Fig. 6. Two Versions of the Mining Control System Software Architecture

The resulting software architecture is presented in Figure 6 (a) using the UML
2.0 notation. The software architecture is composed of 11 architectural elements,
four of them are sensors: (i) MethaneLevel, which detects the level of methane in-
side the mine; (ii) AirFlow, which detects the flow of air inside the pipes; (iii) Wa-
terLevel, which detects the level of water inside the mine; and (iv) WaterFlow,
which detects the flow of water inside the pipes.

The identified controllers (MineralExtractorController, AirExtractorController,
and PumpController), have the role of architectural connectors. Each controller
is responsible for dealing with the normal behaviour of the system, and handling
any exceptions that are propagated by the components. Depending on the state
of the sensors, one of the controllers will always be activated: (i) water low &
methane low ⇒ MineralExtractorController; (ii) water high & methane low ⇒
PumpController; and (iii) methane high ⇒ AirExtractorController. In case there is
a failure that cannot be handled by the system, the AirExtractorController signals
an exception to notify the UserInterface element that such a failure has occurred.

For this architectural configuration, a total of 13 architectural exceptions were
identified related to errors in the system architecture. For exemplifying the flow
of exceptions, in the following, we consider the case when an error is detected
inside the AirExtractor, and an internal exception is raised [10]. If AirExtractor
fails to handle this exception locally, it propagates an exception to the AirExtrac-
torController. Again this architectural element attempts to handle the exception
once it is catched, but if it fails, it propagates the exception to the MineralEx-
tractorController. If the concentration of methane is high and the AirExtractor has
failed, there is nothing that MineralExtractorController can do, except to prop-
agate an exception to its collaborating architectural elements. Upon receiving
this exception, the MineralExtractor, the PumpController and the AirExtractor-
Controller should shut down their activities, and the UserInterface should raise
an alarm for the operator to take the appropriate measures.

Development of Fault-Tolerant Software Systems 141

As indicated by the development process, the verification of the software ar-
chitecture follows two activities. First, the architectural elements were verified
against the restrictions specified by the iFTE. Each element was verified through
22 properties of interest assessing exception signalling and masking. Second, for
the software architecture, we have specified a total of 17 properties, focusing the
attention on the scenarios considered critical to the application. These scenarios
occurs when the Pump is turned on, and the MethaneLevel components informs
that the level of methane is high. In this case, the only sequence of operations
that should be possible is turn the Pump off, and turn the AirFlow component
on. If these operations are successfully executed, the system continues working.
In any other case, an alarm should be raised into the UserInterface.

Executing the process recursively (Activity 7 of Figure 5), the internal struc-
ture of the iFTEs were detailed according to the iFTE abstraction. Figure 7
presents the internal details of two of the architectural elements: PumpController
and Pump. The Required component of the PumpController and the Provided com-
ponent of the Pump are responsible for enabling the interaction, adapting the
received requests (Provided), and the respective return values (Required). Note
that the reuse of the internal structure of the iFTE represents a high-granularity
reuse and a consequent reduction of cost.

Regarding the generation of test cases, we have specified two kinds of tests:
(i) unit test cases were generated for each software architectural element (Ac-
tivity 4 of Figure 5); and (ii) integration test cases were generated for assessing
the existence of mismatches between the architectural elements (Activity 6 of
Figure 5). Table 1 summarises the number of unit test cases generated for the
iFTEs. Regarding integration testing, test cases were generated for each pair of
elements that interact each other, focusing especially in the flow of exceptions
between architectural elements. We have specified a total of 48 test cases. The
criteria adopted for the integration test was to coverage all the critical scenarios
specified for the application (involving error detection and risk of death). To as-
sess the error detection, we have tried to identify both false positives, which are
limit situations of the normal behaviour that could be wrongly interpreted as an
error, and false negatives, which are limit situations of the abnormal behaviour

<<iFTEComponent>>

Pump

ProvidedP

<<component>>

RequiredP

<<component>>

CoordinatorP

<<connector>>

NormalP

<<component>>

I_P_RN I_R_PN

I_N_PN
I_N_PA I_N_RN I_N_RA

AbnormalP

<<component>>

I_P_RA I_R_PA

I_A_PN I_A_PA I_A_RN
I_A_RA

I_P_PN

I_P_PA

<<iFTConnector>>

PumpController

I_PC_PN

I_PC_PA

ProvidedPC

<<component>>

RequiredPC

<<component>>

CoordinatorPC

<<connector>>

NormalPC

<<component>>

AbnormalPC

<<component>>

I_P_RN

I_P_RA

I_R_PN

I_R_PA

I_A_PN I_A_PA I_A_RN
I_A_RA

I_N_PN
I_N_PA I_N_RN I_N_RA

I_PC_RN

I_PC_RA

Fig. 7. Part of the Detailed View of the Mining Control System Architecture (iFTE)

142 P.H.S. Brito, R. de Lemos, and C.M.F. Rubira

Table 1. Number of unit test cases for the iFTEs

Arch. Element # Arch. Element #
UserInterface 6 MineralExtractorController 38

AirExtractorController 19 PumpController 22

AirExtractor 6 MineralExtractor 6

Pump 6

that could not be detected by the application. Details about the execution of
test cases (Activity 9 of Figure 5) are available elsewhere [4,5].

4.4 Choosing the HoFE Abstraction

In Step 2 of the case study, we have chosen the HoFE abstraction during the
specification of the software architecture of the mining control system (Activ-
ity 1 of Figure 5). The resulting software architecture is presented in Figure 6 (b).
The use of the HoFE abstraction has considerably reduced the number of archi-
tectural elements, since the mechanism of error detection is hidden inside the
architectural elements, and noticed only at the second level of recursion. The
HoFE-based architecture is composed of 11 architectural elements, four of them
are sensors: (i) MethaneLevel, which detects the level of methane inside the mine;
(ii) AirFlow, which detects the flow of air inside the pipes; (iii) WaterLevel, which
detects the level of water inside the mine; and (iv) WaterFlow, which detects the
flow of water inside the pipes. It is assumed that in this system all the archi-
tectural elements are HoFEs, except for the four sensors (AirFlow, MethaneHigh,
WaterLow, WaterHigh) and the MineralExtractor component, which are assumed
to be free of faults.

The three identified controllers (MineralExtractorController, AirExtractor-
Controller, and PumpController), have the role of architectural connectors
(�HoFConnectors�). Each controller is responsible for dealing with the normal
behaviour of the system, but they will stop once an internal error is detected. For
example, if there is a fault that prevents the air to be extracted, the AirExtractor
detects it and halts. After that, the AirExtractorController, which cannot operate
without the AirExtractor working, halts to inform the MineralExtractorController
that there is a problem. Finally, when the MineralExtractorController halts, the
UserInterface detects it and raises a warning alarm.

Regarding the verification of the HoFE architectural elements (Activity 3 of
Figure 5), each element was verified through 10 properties of interest predefined
by the abstraction. For verifying the architectural configuration (Activity 5 of
Figure 5), we have specified a total of 21 properties, focusing the attention on the
scenarios considered critical to the application. There are two kinds of critical
scenarios: (i) scenarios involving error detection, which occur when the internal
redundancies of the HoFE diverge on their results; and (ii) scenarios involving
risk of death, which occur when the Pump is turned on, and the MethaneLevel
components informs that the level of methane is high. During the verification,
no property have been violated. To test the verification mechanism, we have

Development of Fault-Tolerant Software Systems 143

<<HoFConnector>>

PumpController

<<component>>

PumpController2

<<connector>>

Decider

<<component>>

PumpController1

I_PC

_Prov

I_PC

_Req

I_PC1_Prov

I_PC2_Prov

I_D_

Req

I_PC1

_Req

I_PC2

_Req

<<HoFComponent>>

Pump

<<component>>

Pump2

<<connector>>

Decider

<<component>>

Pump1

I_P

_Prov

I_P1_Prov

I_P2_Prov

I_D_

Req

Fig. 8. Part of the Detailed View of the Mining Control System Architecture (HoFE)

forced a failure in the model, allowing the AirExtractor component to continue
working after a previous halt. In this case, two properties have been violated:
violation of the halt-on-failure principle, related to the HoFE abstraction, and
invalid architectural scenario, related to the architectural configuration.

Executing the process recursively (Activity 7 of Figure 5), the internal struc-
ture of some architectural elements were detailed according to the HoFE abstrac-
tion. Figure 8 illustrate the recursive decomposition of two of the architectural
elements: PumpController and Pump. For verifying the internal details of the
HoFEs, other 15 properties have been used.

Regarding the generation of test cases, we have specified two kinds of tests:
(i) unit test cases were generated for each HoFE (Activity 4 of Figure 5); and
(ii) integration test cases were generated for assessing the existence of mis-
matches between the architectural elements (Activity 6 of Figure 5). Table 2
summarises the number of unit test cases generated for the HoFEs. Regard-
ing integration testing, test cases were generated for each pair of elements
that interact each other, focusing especially in the error detection, and the
respective impact of it in the execution flow. We have specified a total of
38 test cases. We have adopted the same coverage criteria used for the UML
abstraction.

4.5 Case Study Evaluation

Regarding the qualitative analysis of the case study, we notice that the use of
specific architectural abstractions has provided a gain of separation of concerns,
control of complexity, and evolvability of the software architecture. Moreover,
the use of architectural abstractions made explicit some important design de-
cisions regarding software fault-tolerance. In the iFTE-based architecture, pre-
sented in Figure 6 (a), it is explicit that iFTComponents and iFTConnectors are

Table 2. Number of unit test cases for the HoFEs

Arch. Element # Arch. Element #
UserInterface 3 MineralExtractorController 15

AirExtractorController 7 PumpController 9

AirExtractor 3 Pump 3

144 P.H.S. Brito, R. de Lemos, and C.M.F. Rubira

responsible for detecting errors and tolerating faults through implicit design di-
versity using exception handlers. In the hoFE-based architecture, presented in
Figure 6 (b), the HoFComponents and HoFConnectors are responsible for detect-
ing errors through explicit design diversity using redundant components. The
control of complexity was improved in three complementary ways: (i) reduced
number of architectural elements; (ii) reduced number of dependencies between
architectural elements; and (iii) simplicity of architectural scenarios, which in the
case of the HoFE, abstract away the behaviour of error detection. The internal
decomposition of the abstractions and their respective behavioural refinement,
has enabled a stepwise development of the system, which simplifies the overall
system model, and improves its understandability. Finally, regarding the evolv-
ability of the software architecture, the use of abstractions facilitates the addition
of new non-functional requirements. For example, if we would like to evolve the
HoFE-based architecture to also tolerate faults (not only to detect errors), the
architecture presented in Figure 6 (b) would be almost the same, changing only
the architectural abstraction to a Fault-Tolerant-HoFE, which encapsulates two
HoFEs and a switcher.

4.6 Overall Evaluation

The claim of this paper is that the use of dependable architectural abstractions
can be effective when developing fault-tolerant software systems. Firstly, the
explicit consideration of key issues related to fault tolerance, such as, error de-
tection, reduces the chance of neglecting essential decisions during the system
design. Secondly, system verification has also benefited from using architectural
abstractions. The properties of interest associated with a dependable architec-
tural abstraction can be used as a basis for verifying the architectural elements
and their composition. Moreover, the process of verifying, first, a software archi-
tecture based on the architectural abstraction, and then on its detailed model,
proportionates an incremental verification process that promotes the identifica-
tion and correction of faults at earlier stages of software development. Finally,
regarding the system validation, the adoption of an architectural abstraction al-
lows the test cases for the architectural elements and their configurations to be
gradually refined.

5 Related Work

In this section we review selected publications related to architectural abstrac-
tions for structuring software systems.

Some contributions have proposed graph-based notations for representing
structural constraints of software architectures [11,12]. The simplicity of their
notations is achieved through the use of an architectural abstraction for rep-
resenting high-granularity architectural elements. Moreover, Denford et al. [11]
uses the concept of architectural refinement, which allows the modularisation
and internal decomposition of the architectural elements. The similarity be-
tween the latter and our work concerns the focus on modelling the software

Development of Fault-Tolerant Software Systems 145

architecture in different levels of abstraction, considering the internal structure
of the high-granularity architectural elements. However, the architectural ab-
stractions considered in our work also focus on the representation of behavioural
constraints, in such a way that it is possible to verify and validate properties
related to software fault-tolerance.

Regarding the formal representation of software architectures, there are sev-
eral contributions of architectural languages that support refinement, such as,
SADL [13]that supports structural refinement, and π-ARL [14] that supports
both structural and behavioural refinement. Differently from those notations,
our solution does not define a new description language. Instead, we have defined
formal templates in B-Method [1] and CSP [6] to represent the structure and
behaviour of the software architecture, respectively. This is particularly conve-
nient for representing different types of exceptions (in B-Method), and scenarios
of exception propagation and fault tolerance (in CSP).

Regarding the definition of specific architectural abstractions for dealing with
software fault-tolerance, the idealised C2 component (iC2C) [9] is a structuring
technique based on the idealised fault-tolerant component [2], which focus on
software systems compliant with the C2 architectural style [19]. The internal
protocol followed by the internal elements of an iC2C enforces error confinement
and makes it possible to define multiple exception handling contexts at the
architectural level. Later work by Castor et al. [7] defined and implemented an
architectural level exception handling mechanism based on the concept of iC2C.
The iFTE abstraction presented in this paper can be seen as an extension of
the iC2C for a broader class of software architectures that adhere to the peer-
to-peer architectural style. Moreover, the solution presented in this paper also
provides the proper support for verifying and validating the system based on the
abstractions’ constraints.

6 Conclusions and Future Work

This paper has shown that the development of fault-tolerant software system can
be more effective if architectural abstractions are employed. These are able to
abstract away from system details while providing the means for analysing how
errors are propagated, detected and handled, and how faults are handled. Since
the provision of fault tolerance depends on the system resources and their fault
model, we have presented two distinct architectural abstractions from which
fault-tolerant software systems can be built: the idealised fault-tolerant archi-
tectural element (iFTE), which is based on exception handling, and the halt-on-
failure architectural element (HoFE), which assumes a crash failure semantics.
Associated with these abstractions, we have defined a rigorous development pro-
cesss for the formal specification, verification and validation of software archi-
tectures. The effectiveness in building fault-tolerant software systems based on
these architectural abstractions a simple component-based development process
was demonstrated in the context of the mining control system case study.

146 P.H.S. Brito, R. de Lemos, and C.M.F. Rubira

The proposed approach would benefit considerably if tools were available
that could automate the activities related to the integration of formal speci-
fication, verification and architectural-based validation. An example of such ac-
tivity where a tool could be applied is the automatic extraction of test cases
from the software architecture, taking as a reference the architectural scenarios.
In addition to the two architectural abstractions presented in this paper, the de-
velopment process, or parts of it, could be with other architectural abstractions
for obtaining fault-tolerant software architectures.

References

1. Abrial, J.-R., et al.: The B-Method. In: Proc. of the 4th Int. Symp. of VDM Europe
on Formal Sof. Devel., vol. 2, pp. 398–405 (1991)

2. Anderson, T., Lee, P.A.: Fault Tolerance: Principles and Practice, 1st edn. Prentice-
Hall, Englewood Cliffs (1981)

3. Avizienis, A., et al.: Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. on Dependable and Secure Computing 1(1), 11–33 (2004)

4. Brito, P.H.S., et al.: Architecture-centric fault tolerance with exception handling.
In: Bondavalli, A., Brasileiro, F., Rajsbaum, S. (eds.) LADC 2007. LNCS, vol. 4746,
pp. 75–94. Springer, Heidelberg (2007)

5. Brito, P.H.S., et al.: Verification and validation of a fault-tolerant architectural
abstraction. In: Proc. of the Workshop on Architecting Dependable Systems, pp.
1–6 (2007)

6. Butler, M.J., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

7. Castor Filho, F., et al.: An architectural-level exception-handling system for
component-based applications. In: de Lemos, R., Weber, T.S., Camargo Jr., J.B.
(eds.) LADC 2003. LNCS, vol. 2847, pp. 321–340. Springer, Heidelberg (2003)

8. da Silva Jr., M.C., et al.: A Java component model for evolving software systems.
In: Proc. of the 18th IEEE Int. Conf. on Automated Soft. Eng., pp. 327–330 (2003)

9. de Castro Guerra, P.A., et al.: A fault-tolerant software architecture for component-
based systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting
Dependable Systems. LNCS, vol. 2677, pp. 129–149. Springer, Heidelberg (2003)

10. de Lemos, R.: Architectural Fault Tolerance Using Exception Handling. In: de
Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems
IV. LNCS, vol. 4615, pp. 142–162. Springer, Heidelberg (2007)

11. Denford, M., et al.: Architectural abstraction as transformation of poset labelled
graphs. Journal of Universal Computer Science 10(10), 1408–1428 (2004)

12. Fahmy, H., Holt, R.C.: Software architecture transformations. In: Proc. of the Int.
Conf. on Software Maintenance, pp. 88–96 (2000)

13. Moriconi, M., Riemenschneider, R.: Introduction to sadl 1.0 a language for specify-
ing software architecture hierarchies. TR SRI-CSL-97-01, SRI International (March
1997)

14. Oquendo, F.: π-ARL: an architecture refinement language for formally mod-
elling the stepwise refinement of software architectures. SIGSOFT Softw. Eng.
Notes 29(5), 1–20 (2004)

Development of Fault-Tolerant Software Systems 147

15. Randell, B.: Turing memorial lecture facing up to faults. Computer Journal 43(2),
95–106 (2000)

16. Schlichting, R.D., Schneider, F.B.: Fail-Stop Processors: An Approach to Designing
Fault-Tolerant Computing Systems. Computer Systems 1(3), 222–238 (1983)

17. Siau, K., Halpin, T.A. (eds.): Unified Modeling Language: Systems Analysis, De-
sign and Development Issues. Idea Group (2001)

18. Sloman, M., Kramer, J.: Distributed systems and computer networks. Prentice Hall
International, Englewood Cliffs (1987)

19. Taylor, R.N., et al.: A component- and message- based architectural style for GUI
software. In: Proc. of the 17th Int. Conf. on Soft. Eng., pp. 295–304 (1995)

20. Thomas, D., Barry, B.M.: Model driven development: the case for domain oriented
programming. In: Companion of the 18th Annual ACM SIGPLAN Conf. on Object-
oriented Programming, Systems, Languages, and Applications, pp. 2–7 (2003)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 148–163, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Interoperability in Component Based
Development with a Family of DSLs

Ileana Ober, Ali Abou Dib, Louis Féraud, and Christian Percebois

IRIT – Université Paul Sabatier Toulouse
118, route de Narbonne 31062 Toulouse- France

{aboudib,feraud,ober,perceboi}@irit.fr

Abstract. In this paper we address interoperability between components speci-
fied using various languages within a same family of DSLs. Our approach con-
sists in applying results of the category theory in order to merge the languages
into a unification one, automatically obtained. For this, we use the category of
formal specifications of each DSL in the family. Using colimits on the category
of algebraic specifications that implements the semantics of the DSLs in the
family, we construct a language that unifies the family. Additionally we obtain
translation morphisms from individual DSLs to the resulting unified one. By
application of the translation morphisms, one can translate each component
specifications into a specification written in the unification language. Moreover,
properties established in the context of a DSL are transferred to the unifying
language. In this paper, we illustrate the unification and the preservation of a
property on an example.

Keywords: heterogeneous components, interoperability, domain specific lan-
guage (DSL), formal semantics, category theory, Specware.

1 Introduction

It has always been the vision of software engineers to have reliable methods to pro-
duce correct software. The rise of domain specific languages (DSL), as opposed to
general purpose languages, highlights the need for interoperability between compo-
nents specified in various DSLs.

The work we present here is triggered by a case study that we developed with col-
leagues from the French Space Agency (CNES). The case study revealed the need to
deal with a set of related – yet different – DSLs in remotely controlled satellites. In
this paper, we propose a rigorous method to deal with heterogeneity in this context:
both at the level of language definition and at the level of component specification.

We consider the category of algebraic semantics of DSLs. Classical results in cate-
gory theory allow us to obtain by construction the formal semantics of a unification
language and translators from the source DSLs to this unification language. The fact
that we also obtain translators from the original languages to the unified one allows its
transparent use. This is essential since one major benefit of a DSL is its accessibility
by domain experts unfamiliar with programming.

 Towards Interoperability in Component Based Development with a Family of DSLs 149

An interesting point in our approach is that properties established in the context of
DSLs and expressed as invariants in the algebraic structure can be transferred to the
unification language.

Our approach is based on the use of already existing tools: Specware [10] that
gives us the framework to reason on categories and the prover Isabelle [16] that is
already connected with Specware. We use it to transfer properties in the context of the
unification language.

This paper is organized as follows: Section 2 gives an overview of the issue of in-
teroperability between components described using related DSLs. In Section 3 we
detail our approach. In Section 4 an example is given. Section 5 presents a discussion
of our approach, with an overview of some related approaches.

2 Components Specified with Related DSLs

The issue of interoperability [9] is not a new one in computer science and it holds at
several levels: software interoperability, modeling / development language interop-
erability and theory interoperability. These levels are strongly related. In this paper
we refer mainly to language interoperability within a set of components specified
using DSLs of a same family.

The starting point of our work is a case study issued from joint work with the Na-
tional French Space Agency (CNES). One major critical issue in this case study is
how to precisely handle the differences existing between languages dedicated to the
definition of procedures for space system testing and operations. Indeed, different
space agencies or equipment builders use different languages to remotely control the
satellites: Pluto [6] for the European Space Agency, Stol by NASA, and Elisa by
EADS/Astrium.

These languages are imperative and contain constructs to deal with algorithmic
constructs, task scheduling, remote commands, and measures, but still they are
distinct. In spite of the need to occasionally use them jointly; several attempts to
impose a unique language have failed, for both economical and political reasons.
The various languages of a family are similar; nevertheless a full interoperability
between agencies and user organizations is necessary for the development of a mis-
sion infrastructure.

DSLs are specific to a domain or to a family of applications. They offer the correct
level of abstraction over their domain, together with accessibility for domain experts
unfamiliar with programming. DSLs focus on doing a specific task well and on being
accessible for domain experts, often less competent in programming. For each DSL it
exist development environments of variable complexity.

The obvious main advantage of using a DSL is that it provides the right vocabulary
and abstraction level for a given problem. The price of this is a Tower of Babel of
languages and the risk to have costly and less powerful development environments.

DSLs are not only dependent on their application domain. Their usage is often tai-
lored on an enterprise’s culture, personal programming, or modeling style. As a result,
a domain is often represented by a family of languages.

A family of languages is a set of related languages that offer similar functionality
at an equivalent level of abstraction. Nevertheless, the different languages of a family

150 I. Ober et al.

differ by syntax and semantics. Indeed, some differences may exist between the se-
mantics of similar constructs in various languages.

Within a family of domain specific languages the issue of interoperability consists
of identifying the best techniques that allow using the different languages in a coher-
ent manner: i.e., continue to use the environments and tools specific to each language,
while being able to switch easily between them. This issue was already highlighted in
[11] in the particular case of two related telephony languages.

3 Automating the Unification of a DSL Family

As mentioned, our study was triggered by a common work with the French Space
Agency on the use of related though different languages (such as Pluto, Stol and
Elisa) to remotely control satellites. Each of these is an example of a DSL: it is de-
signed to best address the needs of remotely controlling satellites, and with no con-
cern for generality or completeness.

We are therefore in the context of a family of DSLs that often need to be used
jointly, for instance, in the case of missions using equipment from various providers.

Our approach is based on the use of well-established results in Category Theory
[6]. Before entering into more details about our approach, let us start by a brief over-
view of the concepts we use.

idx

idz
Z

f

g

f ; g

X Y

idy

Fig. 1. Category of three objects and two morphisms

3.1 Category Theory ABC

Category theory provides abstract mechanisms to deal with structures (called objects)
and their relationships (called morphisms). One can visualize a category as an ori-
ented graph with a composition law on edges and an identity on each node.

For instance, the category depicted in Figure 1 is defined by the objects X, Y, Z and
the morphisms f : X → Y and g : Y → Z. Additionally, the category implicitly contains

identities on objects and the composition “;“, so that f ; g : X → Z.
Within a category, it is possible to obtain amalgamated sums of objects by

pushout: given the morphisms: f1: X → Y1 and f2: X → Y2, the pushout of these
two morphisms is an object Z and two morphisms g1 and g2, for which the diagram in
Figure 2 commutes (i.e. f1 ; g1 = f2 ; g2) and the pushout (Z, g1, g2) is minimal with
respect to this diagram (Figure 3).

 Towards Interoperability in Component Based Development with a Family of DSLs 151

The pushout construction can be generalized to a collection of objects and mor-
phisms as a “colimit”. For more details see [7].

We use the following additional results, summarized in [7]:

Definition (co-complete category): A category is (finitely) co-complete if all (finite)
diagrams have colimits.

Proposition: A category C is finitely co-complete iff it has initial objects (there exists
a morphism from this object to each object in the category) and pushouts of all pairs
of morphisms with a common source.

Z

f1

g1

X Y1

Y2

f2

g2

Fig. 2. Pushout commutativity

Z

f1

g1

X Y1

Y2

f2

g2

Z’

g2’

h

g1’

Fig. 3. Pushout: uniqueness constraint

3.2 Algebraic Specifications of DSLs

Our approach is based on the use of the formal specifications of DSLs. From the
plethora of formal specification techniques available, we choose the algebraic specifi-
cation [23]. An algebraic specification captures both the syntax and the semantics of a
language. The semantics is expressed in terms of: sorts (value domains), operations
(on the given sorts), and axioms (to specify properties in this context).

This formalism is often used in the context of combining specifications [17],
mainly because of the interesting results on them: the algebraic specification forms a
finitely co-complete category [8], i.e., in the context of algebraic specifications the
pushout exists, and the colimit computation can be made in terms of pushouts.

3.3 The Category of Formal Specifications of the DSLs of a Family

The theoretical ground of our research is the category of algebraic specifications of
DSLs. This approach has already proved its relevance in industrial contexts, such as
the one overviewed in [23]. According to [21], a set of algebraic specifications can
constitute a category. The co-completeness results on this category ensure that the
colimit exists. The formal specification of each DSL is an object in this category. Our
goal is to be able to obtain automatically the formal specification of a unification
DSL. The unification can be obtained as a colimit in the category of algebraic specifi-
cations of the DSLs. In order to have all the premises needed for computing the
colimit, we need to additionally define a ”boot” object and a set of initialization mor-
phisms to each of the individual DSL objects, that ensure the existence of the common

152 I. Ober et al.

source mentioned in the proposition in Section 3.1. In the particular case of only two
languages in a family, we are in a framework similar to the one in Figure 2:

1. Y1 and Y2 each correspond to the formal specification of a DSL in the family;
2. X is a “boot” object to be defined, in order to make explicit correspondences

that exist between related elements of Y1 and Y2;
3. f1 and f2 are “initialization” morphisms to be defined;
4. Z corresponds to the unification object, obtained by pushout;
5. g1 and g2 are the morphisms that allow the translation from each original ob-

ject to Z, i.e., to pass from each individual DSL to the unification DSL.

In the case of a DSL family with n members, we have: n objects (Y1,.. Yn); n ini-
tialization morphisms (f1,… fn) and we obtain n translation morphisms (g1, … gn).

The rationale behind the boot object and the initialization morphisms is to ensure
that the obtained unification object goes beyond the set union of the language con-
cepts present in the various languages. We have to express somewhere the correspon-
dence between related constructs that exist in various languages in order to minimize
the perpetuation of related concepts. Therefore, the boot object is a first-level abstrac-
tion of the DSLs in the family and it contains the formal specification of the con-
structs that exist in the various languages.

The boot object X used in the colimit 21 YAY ji ⎯→⎯⎯⎯← can be obtained follow-

ing the newt steps [18]:

1. define the disjoint union of all sorts and operators of Y1 and Y2
2. define equivalence relations on these symbols.

The common symbols (sorts, operators, and axioms) – up to a renaming – form the
boot object X.

The actual mapping between the concepts in the boot object and their correspon-
dents in the specific DSLs is captured by the initialization morphisms that define each
DSL in terms of refinements of the boot object elements.

The colimit operator gives the unification object and the translation morphisms. In
our setting, the colimit object contains the formal specification of a unification lan-
guage. A major interest of this approach is that the object is automatically obtained,
i.e., the unification language is implicit, and its definition unifies the concepts present
in the various languages.

3.4 Applying the Framework to a Set of Component Specifications

The previous section describes how it is possible to depart from the set of formal
semantics of DSLs in a family to obtain the formal semantics of a unifying DSL as
well as translation morphisms from each DSL to the one newly obtained. We exploit
this in the context of a set of components described in various languages of the fam-
ily. Our solution to achieve interoperability consists in calculating the unification
language of a family, as described in the previous section, and translating all compo-
nent specifications into this language.

If the formal specification of a language is set based, the concrete specification of a
program specified in that language is most likely defined as initializations of the vari-
ous sets defined in the formal specification.

 Towards Interoperability in Component Based Development with a Family of DSLs 153

Suppose we have a set of m components described in a set of n DSLs that are
members of the same family (where m ≥ n):

,,,1

1

m
DSLDSL

mkk
CC L with k1,…, km ∈ {1, … , n} (1)

Using the unification DSL and the translation morphisms obtained by means of the
approach described above, the set of components (1) can be translated into the set of
components:

m

DSLDSLDSL
CCC μμμ ',,',' 21 L (2)

DSLμ denotes the unification DSL of the family {DSL1, DSL2, … , DSLn}, and

()i
DSLjj

i

DSL
CgC =μ' , with i ≤ m and j ≤ n (3)

where gj is the automatically obtained translation morphism from DSLj to DSLμ

Therefore, the original set of m components described in the various DSLs
as shown in (1) can be translated into a set of m components described using one
language.

In [20], the authors overview various techniques used for component classification.
In our case, once the components are translated into a same language, the use of the
composition techniques remains unconstrained. If we refer to the original case study
that triggered our work, there the composition is based on the use of scripting lan-
guages. However, this choice is determined by other factors and it is independent of
the heterogeneity of the various components.

3.5 Openings to Verification and Validation

In the context of the algebraic specification, we can define theorems corresponding to
properties of individual DSLs. Moreover, from the axioms corresponding to the for-
mal semantics of a DSL D it is possible to prove a property P given in an equational

form, as a first order logics predicate, if P is a theorem over D’s axioms.

P is transferred to any other DSL, called E, connected to D through morphisms:
the image of a theorem of D is a theorem of E by construction [8]. So, the colimit of a
DSL family preserves the equational properties of the family members.

This gives the opportunity to verify properties separately in the context of DSLs
and to transfer them in the context of the unification DSL.

4 Experimental Framework

As mentioned before, this work was initiated by a case study where the major issue is
the interoperability between components specified using various DSLs in a same
family dedicated to the remote control of the satellites. The different languages exist-
ing are imperative and contain constructs to deal with algorithmic constructs, task
scheduling, remote commands, and measures, still they are distinct languages.

154 I. Ober et al.

To illustrate our approach we extract a subset of this case study.

4.1 DSL Family Overview

In our example we use a family composed of two languages with a similar power of
expression. The list of concepts they contain is not completely overlapping:

DSL α handles conditions and events exchanged between the remote system and
the local application.

DSL β contains control structures that allow the decomposition of various activities
into independent steps encapsulated within the procedures.

The main concept, present in both α and β, is the notion of procedure describing a
goal to attain. In α, it materializes into the notion of block, while in β, it gets into a
module. The main parts of a procedure are:

- the activation conditions (called check in α and condition in β);
- the body that describes the steps to be taken by the execution.

Before we actually proceed to a procedure’s execution, its activation is evaluated.
This can result either in the abortion of the procedure execution if the activation con-
dition is not satisfied, or in the normal sequential execution of the procedure body.

In both α and β, activations may contain logical expressions. Additionally, α con-
tains a wait construct which allows the testing of event occurrences. In this setting,
the events are generated by the environment and are stored in a wait queue managed
using a FIFO policy. When the wait clause of an activation fails the procedure is
aborted.

In the DSL β, the activation contains the evaluation of a contingency on the status
of the input queue. The contingency offers a connection point to hardware sensors.

4.2 Unifying the Languages Using Existing Tools

One of the goals of our study is to be able to exploit tools that already exist. The
framework we set up for experimentation is based on using Specware [12][10][20].
This tool has been successfully used in the context of industrial projects [23] and it
allows the manipulation of algebras and computation of pushouts. Specware permits
the formal specification refinement into executable code by stepwise refinement.
Coupled with theorem provers such as Isabelle [14] (see below), Specware guarantees
that the final executable code is provably correct. In the context of Specware, it is
possible to specify proof obligations with Higher Order Logic (HOL) which cover our
formal requirements.

Our case study takes as an input the formal semantics of the languages α and β, in
terms of abstract types. First, we focus on the language definition level. Figure 4 illus-
trates the concepts we handle at this level and their relationship with Specware. One
can see that, besides the formal semantics of the languages we need to identify a boot
object and the initialization morphisms, by using the process mentioned in Section 3.3.

In the formal specification of DSLs α and β, we use the notion of environment
(modeled by the sort Environment) that is the set of variable-value pairs correspond-
ing to all the variables local to the procedure in DSLs α and β. Additionally, in α, the
environment contains an event queue.

 Towards Interoperability in Component Based Development with a Family of DSLs 155

DSL2 DSLnDSL1 … DSLγ

Initialising
morphisms

SPECWARE

DSLμ Translation
morphisms

Fig. 4. Overall picture of the constructs handled at language definition level

In DSLs α the evaluation of a block activation (the block is modeled by the sort
Block) may contain a check in the context of the environment. This is modeled with
the aid of the operator evalBlock whose evaluation affects the environment:

op evalBlock : Checks × Block × Environment → Status × Environment

In addition to this general activation evaluation, in DSL α there may be a check
variable clause in the activation. This is to say that the block evaluation can only
proceed if the variables evaluate to true:

op checkVariables :Checks×Block×Environment→ Boolean × Environment

To capture the fact that the evaluation to false of the variables leads to the abortion
of the block we have the following axiom1:

axiom a1 is fa (c: Checks, b: Block, e: Environment)
~checkVariables(c,b) => evalBlock(c, b, e) = (aborted, e)

Moreover, the following axiom characterises the variable evaluation2, for which
the sort Environment is refined as Enviromment = Context × Queue. The same envi-
ronment definition same exists in β.

axiom a3 is fa (c : Checks, e : Environment) checkVariables (c, e) =
 checkExpressions (c.1, e.1) && waitStatements (c.2, e.2)

Similar to a Block in α, in the DSL β, we have the notion of module. A module
evaluation is captured by the operation evalModule. A module evaluation can be
completed only if its precondition is satisfied and the contingency status is ok. The
following operators and axioms capture this:

1 In these axiom fa stands for the universal quantifier for all (∀).
2 For a product type, T = T1×… ×Tn, for t ∈ T,t.i refers to the projection on Ti.

156 I. Ober et al.

op evalModule:Conditions×Statements×Environment → ModuleStatus ×
Environment
op evalPreconditionBody : Conditions × Environment → Boolean
op evalBooleanExpressions : List (Expression) × Context -> Boolean
op evalContingency : Environment → Boolean

axiom b1 is fa (lc : Conditions, s : Statements, e : Environment)
 ~ evalPreconditionBody (lc, e) => evalModule (lc, s, e) = (aborted, e)

axiom b2 is fa (lc : Conditions, e : Environment)
 evalPreconditionBody (lc, e) = evalBooleanExpressions (lc.1, e.1)
 && evalContingency (e.2)

In order to be able to unify the languages α and β, we have to identify correspond-
ing concepts and to encapsulate into the boot object. After analysing the specification
of the languages DSL α and DSL β, we realize that several concepts are similar up to
a renaming. For instance, the notions of Block (α) and of Module (β) can be unified
into a notion of Procedure which we include in the boot object γ. We apply a similar
analysis of the other parts of the language, which leads us to the definition of the boot
language. Here are some elements of its specification (to easy the reading we qualify
these names with γ):

op evalProcedureγ: Conditions × Steps × Environment →
 ConfirmationStatus × Environment
op evalPreconditionγ: Conditions × Environment -> Boolean
op evalExpressionsγ : List (Expression) × Context -> Boolean

To clarify the relationships between the various operators and sorts of γ, and their
counterparts in α and β, we define correspondences between them. These correspon-
dences constitute the initial morphisms3:

gamma_to_alpha = morphism gamma → alpha{

Conditions +→ Checks, Steps +→ Block, ConfirmationStatus +→ Status,
evalProcedure +→ evalBlock, evalPrecondition +→ checkVariables,
evalExpressions +-→ checkExpressions}

gamma_to_beta = morphism gamma → beta{
Steps +→ Statements, ConfirmationStatus +→ ModuleStatus,
evalProcedure +→ evalModule, evalPrecondition +→ evalPreconditionBody,
evalMainBody +→ evalSequenceSection,
evalExpressions +→ evalBooleanExpressions}

Specware provides several techniques for combining specifications. In particular
using the translate operation one can rename a (set of) sorts in the specification, simi-
lar to morphism definitions (such as those presented above). In our case study we do
not use the translate, as we need to do more than simply renaming some terms.

3 In Specware a +→ x is a notation to specify that a morphism takes a into x.

 Towards Interoperability in Component Based Development with a Family of DSLs 157

The boot object γ contains not only the common sorts and operations, but also an
abstraction of the common part of the axioms of the different languages (here α and
β). The following axiom factorizes the axioms a1 (α) and b1(β) presented above:

axiom g1 is fa (lc : Conditions, ls : Steps, e : Environment)
 ~ evalPrecondition (lc, e) => evalProcedure (lc, ls, e) = (aborted, e)

All the elements are ready for pushout calculation. At the implementation level, we
do it in Specware. The pushout is an algebraic specification, i.e. it contains sorts,
operators and axioms that unify those from α, β, and γ. This algebraic specification
corresponds to what we called the unification language μ. This language contains
sorts corresponding to the sorts refined from γ (i.e. having counterparts in α and β),
plus sorts specific to α and β. In the pushout we keep track of the origins of sorts and
operators called differently in the context of the other languages.

In the example below, the sort definitions (1) and (2) correspond to sorts originat-
ing from a term unification in α, β, and γ. The sort definitions (3) and (4) correspond
to terms that exist and have the same name in α, β, and γ. In addition, the sort defini-
tion (1) has been refined from γ with the same type product both in α and β.

type {Checks, Conditions} = List (Expression) × List (Event) (1)
type {Block, Statements, Steps} (2)
type Expression (3)
type Event (4)
type Queue = List (Event) (5)

The same happens in the case of the operators: they are either unified from various
languages, or copied from a single language (otherwise). For example, the operator
described below is unified form α, β, and γ:

op {evalBlock, evalModule, evalProcedure} :
Conditions × Steps × Environment → ConfirmationStatus × Environment

The pushout also unifies the axioms. The axioms specific to α, β, or γ are translated
as such. Therefore, the pushout will contain the axioms a1, a3, b1, b2, g1, described
above. More than a mechanical copy, the transfer on the axioms in the context of μ is
also ensuring that no contradictions exist between them. Therefore the specification of
μ is coherent.

4.3 Preserving Properties

One key issue in this approach is that it can unifies properties established in the
context of individual DSLs. In order to do this, we follow the schema presented in
Figure 5.

In α, let us consider the following property P: at the evaluation of an activation
that contains a wait clause over a set of events, if the input queue contains fewer
events, then the activation evaluation fails and the procedure execution is aborted.

158 I. Ober et al.

S
P
E
C
W
A
R
E

P

i
DSLC

α

ISABELLE

Fig. 5. Property transfer from an arbitrary DSL to the unification context

We express it as a property, through two theorems in α (one for each part of the
conjunction in the property):

theorem t0 is fa (le : List (Event), q : Queue)
 length (le) > length (q) ⇒ ~waitStatements (le, q)

theorem t1 is fa (le : List (Event), q : Queue)
 length (le) > length (q)
⇒ fa (l : List (Expression), c : Context) ~checkVariables ((l, le), (c, q))

To prove this result, we use a bridge offered by the Specware environment to the
proof assistant Isabelle [14]. We apply the prover successfully on the previous exam-
ple in the context of α, thus the P property holds, i.e. t0 and t1 are provable theorems.

If we add this property to the DSL α specification, when Specware calculates the
pushout, it transposes this property in the context of the unification language. This
leads to a property P’. In our case, the two properties are written identically. Note

however that even though P and P’ are syntactically identical; they do not represent
the same property as they are expressed in the context of different sets of axioms.
According to [8], by construction P’ is a theorem in the context of μ.

However, as the case study is extracted from a domain where strong qualification
is needed and in order to convince the industrial partners about the soundness of this
property, we need to prove it again in the new context. Using Isabelle, the validity of
P’ in the context of μ is established also. Note that the proof of P’ capitalizes the

experience obtained with the proof of P: we use the same proof tactic, and similar
intermediary lemmas.

One interesting feature of Specware that we have not yet used, as it is a component
specification level feature, is the fact that we can get from the formal specification
(e.g., equivalent to a component specification) to executable code through stepwise
refinement. Moreover, Specware may guarantee that the final executable code is
provably correct, with respect to the original specification.

i
DSLC

μ

P’

ISABELLE

 Towards Interoperability in Component Based Development with a Family of DSLs 159

5 Discussion

In this paper we present an approach to deal with interoperability within a set of com-
ponents specified in DSLs from a same family. Our approach is based on the exploita-
tion of basic results in Category Theory in order to construct the unification DSL of
the family.

One of the most important benefits of this approach is that it uses the category of
formal specifications of the languages in the family. Depending on the level of detail
present in the formal specification, this allows the treatment of both syntactic and
semantic interoperability issues, thus we go beyond purely translational approaches.

Our approach allows to obtain the specification of the unification language of the
family. An interesting feature that results, is that end users do not have to interact
with it. One of the main advantages of DSLs is that it allows domain experts (not
necessarily computer scientists) to write specifications. It is important to keep it like
this, and that the interoperability does not come at the price of additional requirements
from the users.

The unification language depends on the set of DSLs in the family. This means that
different sets of DSLs would probably lead to various unification language defini-
tions. The unification language of a set of DSLs is the best representative for that set
and its definition is based on usage and need rather than on a best guess on the list of
features present among the family.

Another key advantage of our approach, which we illustrated in our example, is
that it preserves/translates properties established in the context of individual DSLs.
This is particularly interesting in a domain where verification and validation are major
concerns.

In order to meet the hypothesis of colimits application we need to provide a boot
language and one initialization morphism per language in the family to unify. We
have to express somewhere the correspondence between related constructs from vari-
ous languages, in order to avoid the multiplication of similar concepts. The boot ob-
ject and the initialization morphism play precisely this role.

The experience we have with the definition of these elements shows that the effort
needed to define them is reasonable. Note that as the size of the boot object is re-
duced, defining the initialization morphisms is inherently simpler than defining trans-
lators from language to language.

One of the paths we plan to develop in the future concerns improving the method-
ology for defining the boot object.

Why applying this approach on a family of languages and why on DSLs?
One feature that is present in most DSL definitions [5] is the fact that they have a
narrow application scope and contain a limited set of constructs. Moreover, DSLs are
specification languages that are often close to the algebraic specification. These ob-
servations plus the constraint on dealing with related languages have an impact on the
definition of the boot language and of the initialization morphisms. For a set of DSLs
the boot language contains a limited number of constructs. Moreover, if the languages
are related it is in principle easier to identify common points and to properly define
their mapping to concepts in each of the languages.

160 I. Ober et al.

5.1 Related Work

Many efforts were devoted to achieve component interoperability. We know of few
approaches that concern, in particular, with the interoperability between components
described in a family of DSLs.

As far as we know, the approach closest to ours is [4], in which the authors address
the issue of building translators between the languages present in a DSL family. As it
happens, the authors work on a similar family of DSLs as their study seems to be
triggered by the same concerns of working with a family of DSLs used to program a
satellite operations procedure. The resemblance of the two approaches ends here. In
[4], the authors exploit the similarities between those languages to semi-automatically
build a transformation schema between them, through the use of an annotated gram-
mar. The result is a schema based on language-to-language translations, whereas we
use an automatically generated unification language. Note that the number of transla-
tors needed is O(n2) on the size of the family, which in the case of large families may
be important. Moreover, in [4] the authors focus on the syntactic level, whereas we
focus on the semantics also.

In [2] the authors describe an approach for using DSL to realize component
composition. Therefore the authors propose the use of DSL as a substitute for
scripting language in component composition. In our case, the components them-
selves are described using DSLs, and our approach consists in translating them into a
same language.

In [11], the authors use AMMA [13] to bridge specific DSLs. This work goes
beyond a simple language translation, as the AMMA environment allows for some
genericity and reuse in a different context. However, this is also a language-to-
language translation approach focusing on the syntactic level.

Finally, none of these approaches tackle the “transformation” of properties from a
language to another, while our approach allows us to exploit properties established in
the context of individual languages.

In [17] the authors solve the composition of modular specifications by means of
colimits of the category diagrams. In the context of algebraic specifications such as
Clear, pushouts allow to gather two specifications that share a common point. We
extend this idea: consider a set of DSLs that can be modeled by a modular specifica-
tion, whose common part has to be identified through the boot specification.

One traditional approach to deal with heterogeneity is to pass through a pivot lan-
guage, which can be visible or internal. The pivot language technique was used in
various contexts, and in principle it has the advantage of minimizing the number of
translators needed, as it is linear with the size of the set of languages O(n). With re-
spect to such an approach, ours has a higher abstraction level. It has the advantage
that the translators we have to define (from the boot object to the various DSLs) are
simpler to define and the drawback that we have to additionally define the boot ob-
ject. Other advantages are that we focus on syntax, semantics, and that we can exploit
properties. For the moment, we do not know of any approach that uses a pivot in a
family of DSLs.

In [11], the authors present an approach for using domain specific modeling
throughout the system development. The issues dealt with in this approach concern
the definition of the syntax and semantics of domain-specific modeling languages,

 Towards Interoperability in Component Based Development with a Family of DSLs 161

plus techniques to deal with models and model transformations. We share the same
concern of software specification through a set of components described in domain
specific languages. However we focus on finding a solution to the heterogeneity
issue, whereas [11] is less concerned with this point, and takes a higher level view.

In [22], the authors promote the use of domain specific modeling for system
development. The authors propose meta-tools to be tailored to the needs of specific
domains. Although we share the interoperability concern, our approach is different.

Most of the research conducted around DSLs concerns the identification of tech-
niques that allow to obtain (more or less automatically) frameworks for extending or
working with DSLs [3], some of them in a visual setting [19]. In [13], authors propose
to apply MDE as support techniques when building DSL frameworks. Our work does
not concern any of these issues related to DSL frameworks.

Our work is intrinsically related with the approaches that use Specware, for
instance, to combine specifications [10] or to perform model driven reverse engineer-
ing [19].

In this paper, we present a continuation of the work started in [1], in particular with
respect to the identification of the objects corresponding to the formal semantics of
the DSL, with respect to the application of the results on property preservation as well
as with respect to its application on component based development.

6 Conclusions

In this paper, we present an approach to handle the heterogeneity within a set of com-
ponents specified by using a family of domain specific languages. This study started
from the concrete case study of procedural languages used to remotely control satel-
lites at the French Space Agency.

Our approach is based on the use of the category of algebraic specifications of the
DSLs in the family. By colimit, we obtain the algebraic specification of a unification
language and morphisms that allow specification translations from DSLs to the unifi-
cation language. Moreover, properties established in the context of original DSLs are
transferred to the unification context.

In order to investigate the feasibility of our approach, we apply it on a family of
two DSLs. By using Specware we obtain the unification language of the family and
the translating morphisms needed to pass from the two DSLs to the unification DSL.

To illustrate the verification facet of our approach, we consider a property specified
in the context of a DSL. By use of the Isabelle prover integrated in Specware, we
prove the validity of this property. Moreover, we transfer this property (by means of
Specware) into a property in the context of the unification DSL.

In a long run, this work opens the way to several research paths:

- Find heuristics or define a methodology to assist the definition of the boot lan-
guage, that follow the preliminary ideas we already presented in Section 5 and
Section 3.3.

- Work on properties established in the context of the concrete specifications.
Until now, the properties we described (as the ones presented in this paper) are
defined at the language definition level. In the future, we will investigate the

162 I. Ober et al.

propagation of properties established in the context of particular components.
This would correspond to application specific properties.

- Work on sets of concrete languages to study the impact of various parameters
on the obtained results (large size families, languages with a close core but still
containing unrelated features).

- Work on the extension of our approach from the use of algebraic specifications
to the wider context of institutions [8]. Indeed, some of the results we used to set
up our approach hold in the context of institutions, it would be interesting to
adapt our approach to the use of institutions, and to study the benefit in terms of
the flexibility in the DSL specification.

- Study which composition technique fits better to our approach. For the moment
we did not tackle this issue. In our experiments we considered that the composi-
tion uses scripting languages.

References

1. Abou Dib, A., Féraud, L., Ober, I., Percebois, C.: Towards a rigorous framework for deal-
ing with domain specific language families. In: ICTTA 2008 Proceedings of the 3rd IEEE
International Conference on Information & Communication Technologies: From Theory to
Applications. IEEE Computer Press, Los Alamitos (in press, 2008)

2. Anlauff, M., Kutter, P.W., Pierantonio, A., Sünbül, A.: Using Domain-Specific Languages
for the Realization of Component Composition. In: Maibaum, T.S.E. (ed.) FASE 2000.
LNCS, vol. 1783, pp. 112–126. Springer, Heidelberg (2000)

3. Batory, D., Lofaso, B., Smaragdakis, Y.: JTS: Tools for Implementing Domain-Specific
Languages. In: Proceedings of the 5th International Conference on Software Reuse, June
02-05, p. 143 (1998)

4. Ordonez Camacho, D., Mens, K., van den Brand, M., Vinju, J.J.: Automated Derivation of
Translators From Annotated Grammars. Electr. Notes Theor. Comput. Sci. 164(2), 121–
137 (2006)

5. Consel, C., Latry, F., Réveillillere, L., Cointe, P.: A generative programming approach to
developing DSL compilers. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 29–46. Springer, Heidelberg (2005)

6. ECSS-E-70-31A - Space Engineering Standard - Ground Systems and Operations - Moni-
toring and Control Data Definition standard

7. Fiadero, J.L.: Categories for Software Engineering. Springer, Heidelberg (2005)
8. Goguen, J.A., Burstall, R.M.: Introducing Institutions: Abstract model theory for specifica-

tion and programming. Research Report ECS-LFCS-90-106, University of Edinburgh
(1990)

9. Hoare, C.A.R., Misra, J.: Vision of a Grand Challenge project, Verified Software: Theo-
ries, Tools, Experiments (VSTTE). In: IFIP 2005, ETH (July 2005)

10. Hongge, G., Weyman, J.: An Approach to Automation of Fusion Using Specware. In: Pro-
ceedings of the Second International Conference on Information Fusion, pp. 109–116
(1999)

11. Jouault, F., Bézivin, J., Consel, C., Kurtev, I., Latry, F.: Building DSLs with AMMA/ATL,
a Case Study on SPL and CPL Telephony Languages. In: ECOOP Workshop on Domain-
Specific Program Development (DSPD) (2006)

12. Kestrel. Specware documentation, http://www.specware.org/doc.html

 Towards Interoperability in Component Based Development with a Family of DSLs 163

13. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks. OOPSLA
Companion, pp. 602–616 (2006)

14. Lapets, A.: Algebraic Semantics of Domain-Specific Languages Thesis, Harvard (2006)
15. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific lan-

guages. ACM Comput. Surv. 37(4), 316–344 (2005)
16. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283.

Springer, Heidelberg (2002)
17. Oriat, C.: Étude des spécifications modulaires: constructions de colimites finies, dia-

grammes, isomorphismes. PhD thesis (in French), INPG, Grenoble (1996)
18. Pavlovic, D., Smith, D.R.: Software Development by Refinement. In: Aichernig, B.K.,

Maibaum, T.S.E. (eds.) Formal Methods at the Crossroads. From Panacea to Foundational
Support. LNCS, vol. 2757, pp. 267–286. Springer, Heidelberg (2003)

19. Rugaber, S., Stirewalt, K.: Model Driven Reverse Engineering. IEEE Software 21(4), 45–
53 (2004)

20. Schneider, J.-G., Nierstrasz, O.: Components, scripts and glue. In: Software Architectures -
Advances and Applications, pp. 13–25. Springer, Heidelberg (1999)

21. Smith, D.: Composition by Colimit and Formal Software Development. In: Futatsugi, K.,
Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS,
vol. 4060, pp. 317–332. Springer, Heidelberg (2006)

22. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evolution.
Journal of Visual Languages & Computing 15(3-4), 291–307 (2004)

23. Williamson, K., Healy, M., Barker, R.: Industrial Applications of Software Synthesis via
Category Theory—Case Studies Using Specware. ASE Journal 8(1), 7–30 (2001)

24. Wirsing, M.: Algebraic specification languages: An overview. In: Reggio, G., Astesiano, E.,
Tarlecki, A. (eds.) Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp.
81–115. Springer, Heidelberg (1995)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 164–179, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Modeling Architectural Patterns’ Behavior Using
Architectural Primitives

Ahmad Waqas Kamal and Paris Avgeriou

Department of Mathematics and Computer Science
University of Groningen, The Netherlands

a.w.kamal@rug.nl, paris@cs.rug.nl

Abstract. Architectural patterns have an impact on both the structure and the
behavior of a system at the architecture design level. However, it is challenging
to model patterns’ behavior in a systematic way because modeling languages do
not provide the appropriate abstractions and because each pattern addresses a
whole solution space comprised of potentially infinite solution variants. In this
paper, we advocate the use of architectural primitives for systematically model-
ing architectural patterns in the behavioral view. These architectural primitives
are found among a number of architectural patterns and serve as the basic build-
ing blocks for modeling patterns’ behavior. The main contribution of this work
lies in the discovery of architectural primitives, defining architectural primitives
using UML, and capturing the missing pattern semantics by using UML’s
stereotypes.

Keywords: Architectural Patterns, Architectural Primitives, Modeling, UML.

1 Introduction

Architectural patterns provide solutions to recurring design problems that arise in a
specific context [1] [2]. These patterns propose a particular structure and behavior that
can be tailored to the specific needs of the problem at hand [3] [4]. The solution of an
architectural pattern is a model; applying the pattern results in incorporating that model
into the software architecture of a specific system. One of the most significant aspects
of modeling architectural patterns is the patterns’ behavior, which are mostly repre-
sented as scenarios that define the run-time actions of the patterns [4]. Such a run-time
behavior is vital for the pattern implementation as it shows the way ‘pattern partici-
pants’ collaborate and communicate with each other to express a pattern. We use the
term ‘participants’ to mention the modeling elements that work in association to ex-
press architectural patterns. Unfortunately, modeling architectural patterns’ behavior in
a systematic way remains a challenging task mostly due to the following reasons:

a) Pattern participants do not match the architectural abstractions of commonly
used modeling languages.

b) Architectural patterns’ behavior can potentially be modeled in infinite differ-
ent ways to balance the forces related to the problem at hand.

 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 165

Architecture Description Languages (ADLs) (e.g. ACME [5] or Wright [6]) and
UML [7] have traditionally been used for modeling architectural patterns. Few of
these languages focus specifically on modeling patterns’ behavior while few others
provide general architectural abstractions that can be extended to express patterns.
UML is one such widely known modeling language that offers a generalized set of
interaction elements to describe behavioral aspects of software architecture. However,
both ADLs and UML provide only limited support for modeling patterns [8] because
the architectural abstractions provided by these languages do not match the pattern
participants and because they do not provide mechanisms for modeling the infinite
variability of pattern behavior.

In our previous work, we have identified a set of architectural primitives in the
Component-Connector view [9] and the Process Flow view [10]. We consider the
primitives as key participants in modeling patterns and use them as the fundamental
modeling elements to express a pattern in system design. These primitives offer reus-
able modeling abstractions that can be used for systematically modeling pattern vari-
ants. In this paper, we extend our work by focusing on architectural primitives in the
behavioral view. We show how few primitives, which are already used for modeling
patterns in the structural view, can be used for modeling patterns in the behavioral
view as well. We illustrate our approach by presenting how the behavior of three
typical architectural patterns can be modeled with the help of these new primitives.
Furthermore, since primitives alone do not capture the entire semantics of the pat-
terns, we show how to identify the missing semantics and express them through a
vocabulary of pattern-specific objects and messages.

The remainder of this paper is structured as follows: in Section 2, we motivate
our choice of selecting UML’s collaboration diagram for modeling patterns’ behavior.
In Section 3, we present our approach for representing patterns and primitives as
modeling abstractions using an extension of the UML. Section 4 gives detailed infor-
mation of the primitives discovered during our work. In Section 5, we use primitives
and a vocabulary of design elements, for modeling three selected patterns. Section 6
elaborates on related work and Section 7 discusses the future work and concludes this
study.

2 The Unified Modeling Language in the Behavioral View

Although any modeling language can be used for modeling architectural primitives as
long as the selected modeling language supports an extension mechanism to handle
the semantics of the primitives, the UML is our choice in this work. The motivation
behind the selection of UML is: a) UML is a widely known de facto modeling lan-
guage; b) UML provides explicit extension mechanisms; and c) UML supports a
variety of diagrams for describing the behavioral aspects of software architecture,
such as Use case, Sequence, Collaboration, Statechart, and Activity. Each of these
diagrams serves specific purposes to describe software design, which at times overlap
with each other. These diagrams use particular UML modeling elements, which can
be extended to meet the specific needs of modeling a system. In this paper, the re-
quirements that we consider for modeling patterns’ behavior are as follows:

166 A.W. Kamal and P. Avgeriou

- Pattern elements operations: The operations performed by pattern partici-
pants show the true essence of pattern behavior. The operation parameters,
return values, and operation type should be represented in the design.

- Relationships among pattern elements: The relationships define the nature of
interactions performed by the objects, such as the order of occurrence of the
operations, multiplicity, and direction of flow etc.

- Pattern behavior in response to user/system interaction: Capturing the be-
havior of pattern participants that can explain the major dynamics of the pat-
tern when a specific event or user/system action takes place.

Depending on the purpose, the UML supports a variety of diagrams for modeling
different aspects of system behavior. A brief description of each UML diagram for
modeling system behavior and their comparison to the requirements listed above is
given as follows:

- Use Case Diagrams describe the interaction between actors – who initiate the ac-
tion – and the system. The interaction is usually described using a sequence of
steps. Use cases are usually defined at a higher level where the system design is
considered as a black box, and emerges from the requirements used for designing
the system. The use case diagrams, being at a higher level of abstraction, are not
a close match to the requirements listed above because our focus lies on detail
level interactions and operations among pattern participants.

- Sequence diagrams use objects, events, and arrows to depict scenarios by ex-
changing messages between objects when a specific event occurs. They usually
show the execution of a typical example. Sequence diagrams are a close match to
the requirements listed above as they show the sequence of operations entailed by
the architectural patterns, occurrence of events to invoke specific operations, and
use messages to show the interaction among pattern participants.

- Statechart diagrams show interactions with other objects inside or outside the
system. A state shows the execution of a specific function when an event occurs.
State diagrams are more focused on transition of states among objects while our
focus lies on interaction among objects, which makes these diagrams a weak op-
tion for modeling patterns’ behavior in context of the requirements listed above.

- Collaboration diagrams depict scenarios as flow of messages. Collaboration dia-
grams are very similar to sequence diagrams. However, an obvious difference is
that collaboration diagrams show the teamwork of messages while sequence dia-
grams shows the stepwise execution of messages. Similar to the sequence dia-
grams, we consider collaboration diagrams as a close match to our work since
collaboration diagrams can show the operations taking place between the pattern
participants, the relationship, and occurrence of specific events.

- Activity Diagrams show an operation that is invoked when a specific event oc-
curs. The activity diagram focus on using threads for the transfer of control and
data among objects and hence more often used for synchronization checks [7].
These diagrams too are not a close match to the requirements listed above, as ac-
tivity diagrams do not explicitly show the relationships and interactions among
pattern participants.

 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 167

Thus, we focus on capturing the interaction mechanism between pattern participants
using either the sequence diagrams or collaboration diagrams. While sequence dia-
grams are more restricted to time-bound occurrence of events, the collaboration dia-
grams are the best choice in this work, which rely on interactions and relationships
among objects in a time-independent manner. However, both types of these diagrams
are comparative in nature and can be converted from one form to the other.

3 Extending UML to Represent Patterns and Primitives

UML is a widely known modeling language and is highly extensible [7]. There are
two approaches for extending UML: extending the core UML metamodel or creating
profiles by extending metaclasses. Our work focuses on the second approach, i.e. we
create profiles specific to the individual architectural primitives. To capture the miss-
ing patterns semantics and to express the discovered architectural primitives, we ex-
tend the UML metaclasses using UML profile mechanism. That is, we define the
primitives and pattern participants as extensions of existing metaclasses of UML
using stereotypes and constraints as follows:

- Stereotypes: We use stereotypes to extend the properties of existing UML meta-
classes. For instance, the Message metaclass is extended to generate a variety of
primitives and specialized messages between pattern participants.

- Constraints: We use the Object Constraint Language (OCL) [11] to place addi-
tional semantic restrictions on extended UML elements. For instance, constraints
can be defined on associations between objects, navigability, direction of com-
munication, etc.

a. The UML 2 Metamodel
For the primitives presented in this paper, we mainly extend or use the following
metaclasses of the UML 2.0 interaction metamodel to express the primitives:

- Messages are used to perform operations on the objects. Messages define a spe-
cific kind of communication in an interaction and connect the MessageEnds,
which store references to the adjacent objects that need to be connected.

- Interaction provides connection between connectable elements using message
ends. It uses namespace to store the sequence of operations taking place in the
collaboration diagrams.

- MessageEnd connects the source object to the target object, where the source and
target objects own the message ends.

We have also used the following UML metaclasses in order to express the constraints
on UML metamodel:

- EventOccurence is a specialization of the MessageEnd. The message operations
use the MessageEnds to send and receive events.

- ExecutionOccurence is represented by two event occurrences, the start event oc-
currence and the finish event occurrence.

168 A.W. Kamal and P. Avgeriou

Fig. 1. Part of the UML Interaction metamodel used for defining primitives

4 Architectural Primitives

This section presents a continuation to our previous work where we have listed sev-
eral architectural primitives in Component-Connector view [9] and the Process Flow
view [10]. In this section, we present seven primitives discovered in the behavioral
view that are repetitively found as abstractions in a number of patterns. The aim of
our work is to capture common recurring solutions at an abstraction level that can be
used to model architectural patterns’ behavior, hence providing a better reusability
and systematic support to model patterns. Following, we list the primitives discovered
during our work and present the UML profile elements as a concrete modeling solu-
tion for expressing these primitives.

4.1 Documenting an Architectural Primitive: Push-Pull

Textual Description: Push, Pull, and Push-Pull structures are common abstractions in
many software patterns. They occur when a target object receives a message sent by a
source object (Push), or when a receiver receives information by generating a request
(Pull). Both structures can also occur together at the same time (Push-Pull).

Known uses in patterns

- In the Model-View-Controller [4] pattern, the model pushes data to the view, and
the view can pull data from the model.

- In the PIPE-FILTER [4] pattern, filters push data, which is transmitted by the
pipes to other filters and even pipes can request data from source filters (Pull) to
transmit it to the target filters.

- In the PUBLISH-SUBSCRIBE [4] pattern, data is pushed from the framework to
subscribers and subscribers can pull data from the framework.

 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 169

- In the CLIENT-SERVER [4] pattern, data is pushed from the server to the client,
and the client can send a request to pull data from the server.

Modeling Issues: Semantics of the push-pull structure is missing in UML diagrams. It
is difficult to understand whether a certain operation is used to push data, pull data, or
both. A major problem in modeling the above listed patters in UML is that although a
Push-Pull structure is often used to transmit data among objects, it cannot be explic-
itly modeled using UML interaction diagrams.

Modeling Solution: To capture the semantics of Push-Pull properly in UML, we
propose a number of new stereotypes for dealing with the three cases: Push, Pull, and
Push-Pull. Figure 2 illustrates these stereotypes according to the UML 2.0 interaction
model.

Fig. 2. UML Stereotypes For Modeling the Push-Pull Structure

<<Push>>: A stereotype that extends the ‘Message’ metaclass and attaches to mess-
sage ends that connect adjacent objects.

-- A Push message has only two ends

inv: self.baseMessage->size() = 2

-- A Push message should be represented by a directed Message only

inv: self.baseMessage.type.MessageEnd->select(
Message = Core::MessageKind::directed).class->any(true)

-- The following constraint specifies the presence of interaction link between connected ele-
ments

inv: self.enclosingInteraction->select(
oclAsKindOf(Message)->exists(I:Interaction | I.PushEnd)

<<Pull>>: A stereotype that extends the ‘Message’ metaclass and owns Message
Ends that connect adjacent objects.

-- A Pull message has only two ends

inv: self.baseMessage.end->size() = 2

170 A.W. Kamal and P. Avgeriou

-- A Pull message should be represented by a directed Message only

inv: self.baseMessage.type.MessageEnd->select(
Message = Core::MessageKind::directed).class->any(true)

-- The interaction contains the message ends owned by the adjacent objects

inv : self.enclosingInteraction-> se-
lect(oclAsKindOf(Message)->exists(I:Interaction | I.PullEnd)
implies
select(oclAsKindOf(Message)->exists(I:Interaction |
I.PushEnd)

<<PullEnd>>: A stereotype that extends the MessageEnd metaclass and contains a
number of operations that serve the purpose of Pull operations between connected
elements.

inv: self.baseMessageEnd->forAll(i:Core:: MessageEnd |
PullEnd.baseMessageEnd->exists (j | j=i)

<<PushEnd>>: A stereotype that extends the MessageEnd metaclass and contains a
number of operations that serve the purpose of Push operations between connected
elements.

inv: self.baseMessageEnd->forAll(i:Core:: MessageEnd |
PushtEnd.baseMessageEnd->exists (j | j=i)

4.2 More Architectural Primitives

Due to space restrictions, we do not go into the detailed definition for the rest of the
architectural primitives discovered in this work. Instead, we present a shortened mod-
eling solution.

I. Callback
Textual Description: In a callback interaction between objects, an object B invokes an
operation on object A, where object B keeps a reference to object A. Usually the call-
back function is invoked when a run-time event happens.

Known Uses in Patterns: MODEL-VIEW-CONTROLLER [4], OBSERVER [4],
PUBLISH-SUBSCRIBE [4]

Modeling Issues: A major problem in modeling these patterns in UML is that even
though callback is an active participant in the patterns, it can not be semantically
represented in the interaction diagrams. A UML interaction diagram can depict the
presence of a callback structure but it cannot be distinctively identified. It is hard to
distinguish between many operations taking place between objects and the callback-
specific operations.

Modeling Solution: To capture the semantics of callback primitive properly in UML, we
use the following stereotypes: <<Callback>>, <<EventEnd>>, and <<CallbackEnd>>.

 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 171

The <<Callback>> extends the Message metaclass while the <<EventEnd>> and
<<CallbackEnd>> extend the MessageEnd metaclass. A callback invocation is always
preceded by an event occurrence and the callee object must have subscribed itself to the
caller object beforehand. In this case, the kind of message communication must be of
signal type [7] where the EventOccurence takes place at the sender object (EventEnd)
while the EventExecution takes place at the receiver end (CallbackEnd).

II. Forward-Request
Textual Description: Forward-Request primitives are used to depict the presence of a
request forwarding mechanism. Forward-Request messages decouple the underlying
system from the external objects.

Known Uses in Patterns: PEERS [2], BROKER [4], CLIENT-SERVER[9], FOR-
WARD-RECEIVER [2], MARSHALLER [2]

Modeling Issues: A Forward-Request typically differs from simple function calls,
return calls, and other forms of communications among objects. The Forwarder
object decouples the underlying system implementation from external function calls
and converts incoming data into matching data format without introducing further
dependencies. Moreover, in certain cases, the forwarder objects can receive return
values that are forwarded to the source objects. However, UML elements cannot
structurally express the presence of Forward-Request operations in software design.

Modeling Solution: To capture the semantics of Forward-Request properly in UML,
we propose the following new stereotypes: <<Forward-Request>>, <<ForwardEnd>>,
and <<ReceiverEnd>>. The <<Forward-Request>> extends the Message class and
uses the <<ForwardEnd>> and <<ReceiverEnd>> to connect the adjacent objects.
Both the <<ForwardEnd>> and <<ReceiverEnd>> extend the MessageEnd metaclass
and are owned by the forwarder and receiver objects respectively. To execute an op-
eration,, the <<ForwardEnd>> invokes the sendMessage operation, which is inter-
cepted by the receiver object using the <<ReceiverEnd>>.

III. Command
Textual Description: Calling a method in the target object typically involves invoking
a specific method or procedure in the target object. The invocation operation is usu-
ally carried out on the occurrence of a specific event.

Known Uses in Patterns: MODEL-VIEW-CONTROLLER [4], PRESENTATION-
ABSTRACTION-CONTROL [2], LAYERS [4]

Modeling Issues: A command typically differs from data, events, and other forms of
communications among objects. However, UML elements cannot structurally distin-
guish the presence of command operations in software design.

Modeling Solution: To capture the semantics of Command primitive properly in
UML, we propose two new stereotypes: <<Command>>, and <<CommandEnd>>.
The <<Command>> extends the Message class and uses the <<CommandEnd>> to

172 A.W. Kamal and P. Avgeriou

invoke command on the target object when a specific event occurs. The <<Comman-
dEnd>> extends the MessageEnd metaclass and is owned by the command invocation
object.

IV. Asynchronous Message
Textual Description: In an asynchronous communication, the message sender contin-
ues with its operation without waiting for any reply from the message receiver.

Known Uses in Patterns: PIPE-FILTER [4], CLIENT-SERVER [2], BROKER [4]

Modeling Issues: The patterns listed above often use Asynchronous messaging. UML
supports the invocation of asynchronous messages when a specific event occurs.
However, it does not enforce any constraints in distinctively recognizing the asyn-
chronous operations. Various architectural patterns use degrees of asynchrony in their
operations. In the most common form of asynchronous communication, the sender’s
data is buffered in queues without waiting for the recipient to pick the data. The cur-
rent UML collaboration diagrams support the Asynchronous messaging; however,
there are two major issues:

- Even though the UML diagrams have a support for Asynchronous messaging,
they do not differentiate between the return values from the target objects. It is
an ambiguous ‘hint’ to determine whether the return value is merely a notifica-
tion event about the receipt of message or the actually processed data.

- Asynchronous messages are often buffered in queues until the target object noti-
fies about its availability using events, often much later in the time. Such a
structure cannot be un-ambiguously determined in UML interaction diagrams
where a number of operations among objects are taking place at the same time.

Modeling Solution: We use the <<AsynchMessage>> stereotype along with the exist-
ing UML interaction diagram functions for modeling the asynchronous communica-
tion among the objects. The <<AsynchMessage>> extends the Message metaclass and
uses the existing MessageSend and MessageReceive operations to guarantee that the
invocation flag is active whenever an operation is invoked. We further constrain the
Asynchronous communication to ensure that the method that invoked the operation is
not bound to receive the results and only a notification event can inform the receipt of
message.

V. Synchronous Message
Textual Description: In a synchronous communication, the sender waits till the re-
ceiver finishes the activated operation.

Known Uses in Patterns: PIPE-FILTER [4], CLIENT-SERVER [2], BROKER [4]

Modeling Issues: The patterns listed above often use Synchronous messaging. UML
denotes a synchronous message with a solid arrowhead. We specify additional con-
straints on UML synchronous messages to provide a clear depiction of synchronous
message.

 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 173

Modeling Solution: We add a simple extension to the UML metamodel by proposing
the <<SynchMessage>> stereotype for modeling the synchronous communication
between objects. The <<SynchMessage>> extends the Message metaclass and uses
the existing UML synchmessage operations to ensure that: a) a synchronous message
is always represented with a directed association; b) an end-to-end connection is es-
tablished with the target object, which owns the EventEnd and returns a flag each
time a data processing is completed; and c) a return operation is mandatory for the
synchronous communication to update the status of the operation that invoked the
synchronous communication.

VI. Call-Slave

Textual Description: The objects called slaves provide sub-services on behalf of a
master object. The master also keeps reference to all the slave components.

Known Uses in Patterns: MASTER-SLAVE, PRESENTATION-ABSTRACTION-
CONTROLLER [2], WHOLE-PART [2]

Modeling Issues: The call-slave structure is a key participant in modeling patterns
when a task is delegated to a number of sub-objects. In such a case, the dependent
objects work as slaves and usually do not invoke any operations on the surrounding
elements. UML interaction diagrams can depict such a structure but cannot express
the semantics in the diagrams.

Modeling Solution: We propose the following stereotypes to model the Call-Slave
primitive: <<CallSlave>>, <<Slave>>, and <<Master>>. The <<CallSlave>> extends
the Message metaclass and provides a selfMessage operation to invoke operations that
further call upon slave objects. Both the <<Slave>> and <<Master >> represent the
objects with further constraints such that only the <<Master>> object can access the
<<Slave>> objects.

5 Modeling Architectural Patterns Using Primitives

In this section, we use the primitives described in the previous section to model
known variants of three selected architectural patterns: Pipe-Filter, Model-View-
Controller (MVC) and Client-Server. As aforementioned in the introduction, primi-
tives capture only part of the semantics of the patterns, since there are semantics spe-
cific to individual patterns and not recurring in several patterns. Therefore, in order to
complete the behavioral modeling of patterns, we need to find the missing pattern
semantics and express them through a stereotyping scheme. Due to space limitation,
we only provide detailed OCL constraints for the Pipe-Filter, while we omit the OCL
code for the MVC and Client-Server.

5.1 Pipe-Filter

The Pipe-Filter pattern consists of a chain of data processing filters, which are con-
nected through pipes. The output of one filter is passed through pipes to the adjacent

174 A.W. Kamal and P. Avgeriou

filter. The elements in the Pipe-Filter pattern can vary in the functions they perform.
For instance, pipes can buffer data, form feedback loops or fork/join structures, filters
can be active or passive etc. Each such function can be described with a specific sce-
nario to depict the behavior of the pattern. The primitives discovered so far address
many such variations. We select the Push, Pull, and Synchronous Message primitives
from the existing pool of primitives. The rationale behind the selection of these primi-
tives is as follows:

- The Push and Pull primitives are used to express the pipes that transmit streams
of data between filters.

- Data is sent from one filter to the next filter in the chain using synchronous op-
erations.

Missing Pattern Semantics: Despite the reusability support offered by the selected
primitives, the Pipe-Filter pattern semantics cannot be fully expressed in design be-
cause the feedback, pipe, and filter structure are still missing. We apply the Feedback
stereotype on the Push primitive to capture the presence of feedback loop in the Pipe-
Filter pattern. Such a structure represents data being pushed from one filter object to
another filter object using the feedback loop. The original Push primitive, as de-
scribed in section 4, extends the UML metaclasses of Message and MessageEnd. The
feedback stereotype further specializes the Push primitive by stereotyping it as Feed-
back without introducing new constraints.

<<Feedback>>: A stereotype that is applied on the Push primitive for expressing the
Feedback operation in the Pipe-Filter pattern. The semantics of a feedback operation
are similar to Push and Pull data streams operation.

The second stereotype named ‘Filter’ that we use from the existing vocabulary of
design elements is defined as follows:

<<Filter>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends.

-- A Filter object owns the MessageEnds of the associated pipes such that within an
interaction, it owns the receiver end of source pipe and the sender end of next pipe in
the chain

inv: self.enclosingInteraction->
select(oclAsKindOf(Object)->exists(I:Interaction |
I.MessageOut) implies self.enclosingInteraction->
select(oclAsKindOf(Object)->exists(I:Interaction |
I.MessageIn)

<<MessageOut>> A stereotype that extends the MessageEnd class and owned by the
filter objects

inv: self.enclosingInteraction->select(
oclAsKindOf(Message)->exists(I:Interaction | I.MessageOut)

<<MessageIn>> A stereotype that extends the MessageEnd class and owned by the
filter objects

 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 175

inv: self.enclosingInteraction->select(
oclAsKindOf(Message)->exists(I:Interaction | I.MessageIn)

The fifth stereotype that we use from the existing vocabulary of design elements is the
‘Pipe’ that is defined as follows:

<<Pipe>>: A stereotype that extends the Message metaclass of UML and attaches the
MeesageEnd of source object to the MessageEnd of the target object.

Fig. 3. Modeling Pipe-Filter Pattern Using Primitives and Design Elements

As shown in the figure above, the first filter object pulls data from the source ob-
ject, and after processing pushes this data to the next filter in the chain. The second
filter sends data back to the first filter using feedback pipe for further processing, and
sends the final processed data to the sink.

5.2 Model-View-Controller

The behavior of MVC pattern relies on the functions performed by the following
elements: Model, View, and Controller. The Model provides the functional core of the
application and notifies views about data changes. Views retrieve information from
the model and display it to the user. Controllers translate events into requests to per-
form operations on the view and model elements.

As a first step, we map the MVC pattern to the list of available primitives. We se-
lect the callback and command primitives for modeling the MVC pattern. The ration-
ale behind the selection of these primitives is as follows:

- The view subscribes to the model to be called back when some data change oc-
curs.

- Controller issues a command request on the model and view objects when some
event occurs.

Missing Pattern Semantics: However, not every aspect of the MVC pattern can be
modeled using the existing set of primitives. For instance, the Model, View, and Con-
troller objects are not mapped to any primitives discovered so far. Keeping in view
the general nature of these objects and their mandatory use in modeling different

176 A.W. Kamal and P. Avgeriou

variants of the MVC pattern, we include the <<Model>>, <<View>> and <<Control-
ler>> stereotypes in the existing vocabulary of pattern elements, as described below.

<<Model>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends for interaction with Controller and View objects.

Fig. 4. Modeling the MVC Pattern Using Primitives and Design Elements

<<Controller>>: A stereotype that extends the Object metaclass of UML and owns
message ends for interaction with Model and View objects.

<<View>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends for interaction with Model and Controller objects.

5.3 Client-Server

In a typical Client-Server pattern variant, the server offers operations that are accessed
by the clients and even clients can perform domain-specific operations at their own.
Usually a broker pattern is used to establish connections between client and server.
The client sends request to the broker asking to fulfill a specific task. The broker in
response looks for the appropriate server and assigns the task to the server. The server
provides the functional core of the application and uses the broker to send information
back to the clients.

As a first step, we map the Client-Server pattern to the list of available primitives.
We select the forward-request, asynchronous, and command primitives for modeling
the Client-Server pattern. The rationale behind the selection of these primitives is as
follows:

- The Server issues a command request to the clients when some event occurs.
- The Client and Server side proxies synchronously forward requests to other

objects.

 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 177

Modeling Pattern Semantics: However, not every aspect of the Client-Server pattern
can be modeled using the existing set of primitives. For instance, the Client, and the
Server objects are not mapped to any primitives discovered so far. Keeping in view
the general nature of these objects, we provide reusability support by making these
two pattern participants available in the existing vocabulary of design elements.

<<Client>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends for interaction with Server and mediator objects.
<<Server>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends for interaction with Client, surrounding objects, and mediator objects.

Fig. 5. Modeling the Client-Server Pattern Using Primitives and Design Elements

6 Related Work

The work described in this paper is based on our previous work [9] where we present
an initial set of primitives for modeling architectural patterns in the component-
connector view. However, the idea to use primitives for software design is not novel
and has been applied in different software engineering disciplines [12]. The novelty of
our work lies in the use of primitives for systematically modeling the behavior of
architectural patterns.

Using different approaches, other researchers have been working actively on the
systematic modeling of architectural patterns. Garlan et. al. [13] propose an object
model for representing architectural designs. They characterize architectural patterns
as a specialization of object models. However, each such specialization is built as an
independent environment, where each specialization is developed from scratch using
basic architectural elements. Our approach significantly differs as our focus lays on
reusing primitives and pattern participants, which are defined as specializations of
UML elements.

Werner et. al. [14] uses message sequence charts to propose a language that is ca-
pable enough to fully express the behavioral specification of systems using use cases
and scenarios. Their work focuses on the execution of scenarios when different kinds
of events occur for message calls of type e.g. asynchronous message, synchronous

178 A.W. Kamal and P. Avgeriou

message. In our approach, we also use messages as a base for interaction but our fo-
cus revolves around modeling patterns where we use primitives and pattern partici-
pants’ definitions as reusable abstractions.

7 Conclusion and Future Work

The combination of architectural primitives and the vocabulary of design elements
offers a systematic way to model patterns’ behavior in system design: the primitives
and the design elements are reusable architectural abstractions in the form of extended
UML elements; the semantics of the primitives and subsequently of the patterns can
be validated by checking the OCL constraints; the patterns can be manually or auto-
matically detected in the system design. In this paper, we have extended our existing
pool of primitives with the discovery of seven more primitives in the behavioral view.
Moreover, with the help of some example patterns, we demonstrated the feasibility of
our approach for modeling architectural patterns using primitives.

To express the discovered primitives and design elements vocabulary, we have
used UML2.0 for creating profiles. Compared to earlier versions, UML2.0 has come
up with many improvements for expressing architectural elements. However, we
still find UML a weak option in modeling many aspects of architectural patterns,
e.g. having weak messaging support. As a solution to this problem, we regard the
extension mechanism of the UML as an effective way for describing new elements.
Moreover, the application of the profiles to the primitives allows us to maintain the
integrity of the UML metamodel. By defining primitive-specific profiles, we enable
the user to apply selective profiles in the model.

As future work, we would like to advance the automation of our approach by de-
veloping a tool, which supports modeling pattern variability, documenting design
decisions, analyzing the system quality attributes, consistency checking between the
structural and the behavioral views, and source code generation. We believe that in
different architectural views, more primitives will be discovered in the near future,
which will provide a better re-usability support to the architects for systematically
expressing architectural patterns.

References

[1] Avgeriou, P., Zdun, U.: Architectural Patterns Revisited - A Pattern Language. In: Pro-
ceedings of the 10th European Conference on Pattern Languages of Programs (Eu-
roPLOP), Irsee, Germany, pp. 1–39 (2005)

[2] Buschmann, F., Henney, K., Schmidt, C.D.: Pattern-Oriented Software Architecture: On
Patterns and Pattern Languages. John Wiley & Sons, Chichester ISBN 978-0-471-48648-0

[3] Harrison, N., Avgeriou, P.: Pattern-Driven Architectural Partitioning – Balancing Func-
tional and Non-Functional Requirements. In: First International Workshop on Software
Architecture Research and Practice (SARP 2007), Silicon Valley, USA, p. 21. IEEE, Los
Alamitos (2007)

[4] Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern Oriented Soft-
ware Architecture: A System of Patterns. John Wiley & Sons, Chichester (1996)

 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 179

[5] Garlan, D., Monroe, R., Wile, D.: ACME: An Architecture Description Interchange Lan-
guage. In: Proceedings of CASCON 1997, Toronto, Ontario, pp. 169–183 (1997)

[6] Allen, R., Garlan, D.: A Formal Basis For Architectural Connection. ACM Transactions
on Software Engineering and Methodology 6(3), 213–249 (1997)

[7] Unified Modeling Language: Superstructure, version 2.0, Final Adopted Specification,
ptc/03-08-02, http://www.omg.org/cgi-bin/doc?formal/05-07-04

[8] Kamal, A.W., Avgeriou, P.: An evaluation of ADLs on modeling patterns for software
architecture design. In: 4th International Workshop on Rapid Integration of Software En-
gineering Techniques, Luxembourg (2007)

[9] Zdun, U., Avgeriou, P.: Modeling Architecture Patterns using Architecture Primitives. In:
20th annual ACM SIGPLAN conference on Object oriented programming systems lan-
guages and applications, pp. 133–146 (2005)

[10] Zdun, U., Avgeriou, P., Hentrich, C., Dustdar, S.: Architecting as Decision Making with
Patterns and Primitives. In: Proceedings of the Third Workshop on Sharing and Reusing
architectural Knowledge (SHARK), pp. 11–18. ACM, New York (2008)

[11] Object Constraint Language Specification versions 1.1, OMG standard,
http://umlcenter.visual-paradigm.com/umlresources/
obje_11.pdf

[12] Mehta, N.R., Medvidovic, N.: Composing Architectural Styles from Architectural Primi-
tives. In: Proceedings of the 9th European Software Engineering Conference held jointly
with 10th ACM SIGSOFT international symposium on foundations of software engineer-
ing, Helsinki, Finland, pp. 347–350 (2005)

[13] Garlan, D., Allen, R., Ockerbloom, J.: Exploiting Style in Architectural Design Environ-
ments. In: Proceedings of the ACM SIGSOFT 1994 Symposium on Foundations of Soft-
ware Engineering, New Orleans, LA, pp. 175–188 (1994)

[14] Damm, W., Harrel, D.: LSCs: Breathing Life into Message Sequence Charts, Formal
Methods in System Design. Kluwer Academy Publishers, Dordrecht (2001)

Approach for Dynamically Composing

Decentralised Service Architectures with
Cross-Cutting Constraints

Varvana Myllärniemi1, Christian Prehofer2, Mikko Raatikainen1,
Jilles van Gurp2, and Tomi Männistö1

1 Helsinki University of Technology, P.O. Box 9210, 02015 TKK, Finland
2 Nokia Research Center, P.O. Box 407, 00045 NOKIA GROUP, Finland
{varvana.myllarniemi,mikko.raatikainen,tomi.mannisto}@tkk.fi,

{christian.prehofer,jilles.vangurp}@nokia.com

Abstract. The emergence of open, composable Internet services and
mashups means that services cannot be composed in a centralised man-
ner. Despite this, cross-cutting constraints might exist between services,
stemming from, e.g., security. Especially when used with mobile devices,
these service compositions need to be constructed at runtime. This pa-
per proposes a knowledge-based approach for dynamically finding and
validating decentralised service compositions while taking into account
cross-cutting constraints. The approach is exemplified with a case of a
shopping mall portal.

1 Introduction

The emergence of various second-generation Web technologies enables the cre-
ation of increasingly complex new services by composing multiple services from
multiple Internet locations [1]. For example, mashups combine data or services
from multiple sources into one integrated user experience. At the same time,
the emergence of personal mobile devices for Web browsing sets new require-
ments for service compositions. On the one hand, adapting to the user’s context
and personal preferences requires that compositions need to be changed dynam-
ically. On the other hand, security and privacy issues create constraints in how
services can be composed. Thus service compositions should be able to address
dynamism, decentralisation and cross-cutting constraints.

The first requirement, dynamism, means that service compositions cannot
be predefined, but must be created and recomposed at runtime. In some cases,
even the number or the identities of the services cannot be predefined prior
to runtime. The second requirement, decentralisation, stems from the fact that
services participating in the composition are distributed in the Internet. How-
ever, decentralisation is not only about distribution, but it implies that there is
no central, trusted party that can manage and govern composition. The third
requirement, existence of cross-cutting constraints, means that there are depen-
dencies between services that must be taken into account in order to achieve

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 180–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approach for Dynamically Composing Decentralised Service Architectures 181

a meaningful composition. Often such constraints are related to non-functional
properties, especially security.

Together, dynamism, decentralisation, and cross-cutting constraints make the
composition much more difficult. Because of the decentralisation, security con-
straints cannot be decided by one centralised party. Because of the dynamism,
relationships between decentralised services cannot be established beforehand.
Despite this, existing literature typically addresses these issues separately.

This paper addresses service compositions with dynamism, decentralisation,
and cross-cutting security constraints. We describe a knowledge-based approach
that enables finding and validating decentralised service compositions at runtime.
Validating a composition means ensuring that the architecture or constraints set
by different parties are not violated. The approach describes required knowledge,
activities, and responsibilities; however, going through these in detail is beyond
the scope of the paper. Instead, this paper lays out requirements and first solu-
tions for required knowledge, activities, and responsibilities. We exemplify this
approach using a case of a personalised search service inside a shopping mall.

The rest of the paper is organised as follows: Section 2 presents the case;
Section 3 presents the approach; Section 4 compares the approach to previous
work; Section 5 discusses the results; and Section 6 concludes the paper.

2 Case

The example case in this paper is a shopping mall that provides a Web-based
portal through which the customers inside the mall premises can access and per-
sonalise the services via mobile devices. Using a browser for consuming mobile
services is argued to offer superior portability and scalability [2]. Further, cus-
tomers are familiar with various Web-based portals, which can be personalised
by the user, and can encompass services provided by third parties. Popular ex-
amples of such Web sites include Facebook and MySpace. However, such service
portals can be enhanced by tying them to particular physical places, and aug-
menting them with information on the user’s location, for example.

To concretise a small slice of the service composition in the shopping mall
portal, this paper concentrates on the following running example inspired by
the search feature in [3]. The running example is a personalised search over
available shops in the mall portal. Using the search service, users can search for,
e.g., campaigns, offers, and information. The search can be performed over all
available shops, or over a restricted set of shops. The search service is composed
of several services (Fig. 1): mall search interacts with the user interface and
collects search results from shop search services.

In the following, we discuss the dynamism, decentralisation and cross-cutting
constraints in the case.

Firstly, service compositions in the case must be formed dynamically. In the
shopping mall, each user may wish to personalise the portal, subscribe to services,
and have different device capabilities. Naturally, completely new services may be
published and old services removed. Consequently, service compositions cannot
be decided beforehand; instead, one service composition represents those services

182 V. Myllärniemi et al.

Fig. 1. Running example consists of a composed search service

that can be accessed by one user during one session. In the running example,
there are several factors affecting the composition that cannot be decided before
runtime (see informal explanations in Fig. 1). The number and identity of the
shop searches depend on the available services, on the possible restriction to
cover only certain shops, as well as on the authentication mechanism that the
user used for logging in.

Secondly, the case illustrates how service compositions can be decentralised.
Some of the services may be provided by the mall itself, while some may be
provided by the shops or third parties; in some cases, even customers can act as
service providers. In the running example, the decentralisation stems from the
fact that some of the shop search services are provided by the shops themselves,
not by the mall. This also means that the shop search services may reside on
completely different hosts. To utilise, e.g., past purchase history for personalis-
ing the search, shop search services may require that users authenticate to the
services provided by the shops (see Fig. 1).

Thirdly, there are several cross-cutting constraints that are mostly due to
security and privacy considerations. Providing any kind of personalised service
inherently involves handling sensitive information, such as a customer’s location
or personal preferences. Therefore, there may be a need to authenticate users of
the mall portal. There are several mechanisms for authentication: customers can
use an anonymous login, traditional passwords, or OpenID [4] as a decentralised,
single sign-on (SSO) digital identity framework. However, in the running exam-
ple, not all authentication mechanisms are supported by all shop search services.
The shopping mall has decided to set a constraint that all participating shop
search services must share the authentication mechanism used by the customer.
However, this shared authentication mechanism cannot be decided before run-
time, since it is established when the user logs in to the mall portal (see Fig. 1).

To summarise, the case as well as the running example portray a decentralised
service composition in which there are cross-cutting security dependencies in
how services can be composed. Further, the compositions for one particular
user session cannot be decided beforehand, but they must be constructed at
runtime. This calls for support in finding and validating a service composition
dynamically. Our solution for tackling this particular problem is described next.

Approach for Dynamically Composing Decentralised Service Architectures 183

3 Approach

The overall goal of our approach involves finding a valid service composition. A
valid composition adheres to the preferences and constraints of service providers,
service consumers, and service aggregators, from structural, functional, and se-
curity points of view. The task of finding and validating the composition should
be performed dynamically, as services and requirements for the service compo-
sitions evolve. Further, the approach should not assume any centralised party
that can govern the composition. Finding a valid service composition can be
accomplished in several ways. Compared to composition by trial and error, or
to composition through autonomous interacting agents, our approach relies on
capturing architectural knowledge based upon which service compositions can
be found and validated.

In this section, we describe how our approach accomplishes this overall goal
in terms of architectural knowledge, activities that produce and process the
knowledge, and responsibilities and roles related to the knowledge.

3.1 Architectural Knowledge

In general, the architectural knowledge for service compositions should satisfy
the following requirements. The knowledge should:

1. support automated finding and validation of service compositions;
2. be captured as models of Web-based services and their interfaces;
3. support modelling cross-cutting constraints and structural rules in how ser-

vices can be composed;
4. support dynamically changing services; and
5. support distribution of the services as well as the knowledge itself.

To capture the knowledge, we propose a technology-independent conceptuali-
sation that borrows concepts from WSDL [5] and many architectural description
languages, for example, Koala [6] and UML 2.0. Fig. 2 illustrates a graphical
representation of the running example. Besides this graphical representation, an
XML-based language has been defined for capturing the knowledge shown in
Fig. 2; due to space limitations, this XML language is not described here.

In the following, we discuss each of the above requirements. Our focus here is
on bringing all of these aspects together in a consistent and simple way. As some
of the above items are very general problems, we cannot cover each of these items
in all possible ways, but rather propose basic concepts to model these aspects.

The first requirement states that the service composition should be found and
validated with automated tools. In order for this to be possible, our approach dis-
tinguishes between two kinds of knowledge: composition model and composition
configuration. Composition model depicts the participating service types, their
interfaces and characteristics; it specifies the structural rules and cross-cutting
constraints that govern how services can be composed. In contrast, the archi-
tecture of one particular service composition is called composition configuration.
If composition model specifies the rules, composition configuration is the target

184 V. Myllärniemi et al.

that is composed from and checked against those rules. In order to support auto-
mated finding and validation, our composition model conceptualisation has been
built to be compatible with metamodelling language Nivel with formal seman-
tics [7]. This enables the use of smodels [8], which is a general-purpose inference
tool based on the stable model semantics of logic programs. Using smodels, one
can check the composition model for validity, as well as check the composition
configuration for consistency, for completeness, and to deduce consequences.

Running example. For the search scenario, the composition model defines
rules on how valid service compositions can be formed for different customer
sessions within the shopping mall. The composition model, as well as an example
composition configuration, is shown in Fig. 2. The composition model captures
the service architecture and constraints, illustrated informally in Fig. 1. Further,
the composition model states session parameters as options; in this case, an
option is the method that the user used for logging in to the portal. In contrast,
the composition configuration represents those services that are available for one
particular user session at a time. ��
The second requirement states that the knowledge should be captured as models
of Web-based services and their interfaces; thus the models represent the archi-
tectural knowledge. For this purpose, our approach uses the concept of a service
type for composition model and a service instance for composition configura-
tion. A service type describes a set of service instances with similar properties.
Similarly to, e.g., WSDL [5], a service interacts with other services through its
interfaces only; hence a service exists only as a placeholder of interfaces. An
interface type consists of a number of operations, whereas an interface is an in-
stantiated interface type in a particular service instance. To attach an interface
to a service, a service type can define an interface definition. Similarly to, e.g.,
Koala [6], an interface definition is either required or provided; provided inter-
face definition means that the instantiated service provides the operations for
others to be accessed, while required means that the service instance depends
upon other services for providing these operations. To support varying interac-
tions for the service, the interface definition can define several possible interface
types as well as the minimum and maximum number of instantiated interfaces.

Running example. The composition model in Fig. 2(a) defines a service type
called MallSearchService with a provided interface definition search of type
DoSearch. Although not illustrated here, DoSearch consists of one operation
that takes the search term as an input and returns the results as an output.
The example composition configuration in Fig. 2(b) shows the corresponding
MallSearchService service instance with the provided DoSearch interface. To il-
lustrate the possibility of defining varying capabilities for services, service type
MallSearchService defines a provided interface definition named login, which can
be either of type LoginOpenID or LoginPasswd, or it can optionally be left out
altogether. This means that all service instances of MallSearchService must im-
plement these interfaces, and when the composition is constructed, the interface

Approach for Dynamically Composing Decentralised Service Architectures 185

(a) Composition model

(b) composition configuration

(c) Legend

Fig. 2. Graphical representation of the knowledge describing the service compositions
of the running example

186 V. Myllärniemi et al.

Table 1. Constraint language in the running example

present(ref) true if an instance referenced by ref is in the composition

instance of(ref, type) true if ref is an instance of type

value(ref, attr) the set of values that instances referenced by ref have by
the name attr

for all(X:ref) universal quantifier ∀
and, or, not ∧, ∨, ¬
<=>, => equivalence ⇔, implication ⇒
=, != equals, does not equal

type is selected to match the needed authentication mechanism. In Fig. 2(b),
the interface has been instantiated as LoginOpenID interface. ��
The third requirement states that the knowledge should support adding cross-
cutting constraints and structural rules for how services can be composed. The
proposed conceptualisation provides three mechanisms for this purpose: com-
posite services, constraints, and options.

A simple mechanism for stating how services can be composed is to model
composite services. For this purpose, a service type can define the number and
types of services that it is composed of using a construction called part defini-
tion. A composite service can then delegate calls to some of its interfaces to its
constituent services.

Running example. The composition model in Fig. 2(a) defines one com-
posite service type known as ComposedSearchService. Through part definition
mallSearch, it states that any ComposedSearchService instance contains exactly
one MallSearchService service instance. Since the number of the participat-
ing shop search services can vary, part definition shopSearch states that any
ComposedSearchService instance contains from zero to N ShopSearchService in-
stances. The corresponding composite service instance ComposedSearchService
is shown in Fig. 2(b). ��
Besides composite services, more fine-grained and cross-cutting constraints can
be defined by composition models stating constraints that restrict the instances
in composition configurations. The supported constraints can consist of refer-
ences to service instances, predicates on these references, boolean conjunctions,
and comparison operators. Due to space limitation, the entire constraint lan-
guage is not shown, but Table 1 lists those constructs that are used in the
running example.

Running example. ComposedSearchService defines a constraint that states
that all shop search service instances must have the same authentication mech-
anism. Further, YMartSearchService defines a constraint that denotes it cannot
support OpenID as an authentication mechanism, whereas GadgetsRUsSearch-
Service defines a constraint which denotes that it must always use some authen-
tication mechanism, either OpenID or traditional password. ��

Approach for Dynamically Composing Decentralised Service Architectures 187

There might also be constraints between services and other options of the session.
These options can relate to the user’s device, or to the context or the session itself.

Running example. The authentication method that the user used to log in to
the portal affects the service composition. Fig. 2(a) illustrates how the composi-
tion model specifies an option type LoginOption. LoginOption has one attribute
definition portalLogin, with possible types defined by an attribute value type
AuthMethod. Further, the LoginOption type defines a constraint that relates the
login mechanism to service composition. It states that authentication mechanism
provided by the composite search service must be the same as the user used for
logging in. ��
The fourth requirement states that the knowledge should support dynamically
changing and discoverable services. Since service types are defined independently
of each other in the composition model, newly discovered services can be added
to the model. However, it should be possible to state constraints on these dy-
namically changing services, even if their identities are not yet known. This is
supported by providing abstract service types, which can be inherited by other
service types. An abstract service type can be used as a representative of a set
of concrete service types; all interfaces and constraints defined in an abstract
service type are applicable to the inherited service types as well.

Running example. Since the identities of the participating shop search services
may evolve over time, they are represented with an abstract ShopSearchService
type in the composition model in Fig. 2(a). This way, it is possible to state
constraints on the interfaces of all shop search services without knowing their
identities beforehand. Inherited shop search service types can then state further
constraints: for example, YMartSearchService adds a further constraint that
excludes OpenID. ��
The fifth requirement states that the knowledge should support distribution of
the services as well as the knowledge itself. The distribution of services can be
captured in the composition models by stating the location of concrete service
types. The distribution of the knowledge itself is again supported by the possi-
bility of defining service types independently and then combining this knowledge
to derive composition configurations.

Running example. Concrete shop search service types, such as YMartSearch-
Service, are attributed with location information including protocol, address and
port. Further, concrete search service types can be defined independently of the
model, excluding information on abstract service type SearchService. The de-
tailed process of how this definition is conducted in described in Section 3.2. ��

3.2 Activities

Fig. 3 illustrates the activities that create and process the architectural knowl-
edge described in Section 3.1. Activities numbered from 1 to 4 create and process
composition model, while activities 5 and 6 create and process composition con-
figuration.

188 V. Myllärniemi et al.

Fig. 3. Activities related to the approach

The first activity involves capturing the overall service architecture, architec-
tural cross-cutting constraints, and global options. This activity utilises abstract
service types to group together services with known interfaces and constraints;
thus this activity can be performed without any references to the identities of con-
crete service types. Typically, this activity requires understanding the domain,
and hence cannot be fully automated. As a result of the first activity, an initial
composition model is created. Already at this stage, it is possible to check whether
there are any inconsistencies in the initial composition model, for example, due to
inconsistent constraints. This checking comprises the second activity.

Running example. The first activity involves defining service types Composed-
SearchService, MallSearchService, and ShopSearchService; interface types; and
relevant constraints, as well as option type LoginOption with its constraints.
Since neither the number nor the identity of the participating shop search ser-
vice types is known before runtime, they can be grouped together as an abstract
ShopSearchService service type. �

The third activity in Fig. 3 continues from the initial composition model by
listing concrete service types that can participate in the composition; new con-
straints can also be added. The concrete service types may fill the roles in the
service architecture by inheriting abstract service types defined in the initial com-
position model. This activity may be performed automatically, as part of service
discovery or service registration. Depending on the decentralisation, there may
be several of such registries (see Section 3.3). Again, the fourth activity checks
the inconsistencies in the model.

Running example. The third activity involves registering concrete shop search
service types ZMartSearchService, ShopALotSearchService, GadgetsRUsSearch-
Service, and YMartSearchService. They are marked to inherit the abstract
ShopSearchService type and all its interface definitions. Further, they can spec-
ify further constraints, e.g., YMartSearchService can specify that it does not

Approach for Dynamically Composing Decentralised Service Architectures 189

support OpenID authentication. The third and fourth activities are done auto-
matically when registering new services to the mall. ��
After the composition model has been constructed, composition configurations
can be found and validated. This is begun by stating those session options and
requirements for the composition that are known; this is activity number five
in Fig. 3. These known requirements and options are captured in an initial
composition configuration. The final activity in Fig. 3 involves validating the
initial composition configuration against the composition model, and filling in
the consequences to obtain the final service composition configuration. In this
case, a valid composition configuration is such that it does not violate the rules
or the constraints specified in the composition model. Since activities five and six
rely on an existing composition model, they can be fully automated. Typically,
for one composition model, activities five and six can be repeated whenever there
is a need to find or validate compositions.

Running example. The fourth activity starts by identifying the authentica-
tion mechanism that the user used for logging in, as well as possible user-set
restrictions on the shops participating in the search. If the user had logged in
using his or her OpenID identity, without any restrictions on the shops, the sixth
activity would involve finding and validating a composition configuration that
aggregates all shops providing an OpenID authentication mechanism. �

Again, the activities in Fig. 3 can be evaluated from the point of view of cross-
cutting constraints, dynamism, and decentralisation.

The first aspect, support for cross-cutting constraints, is realised by providing
the possibility to model and check such constraints in activities one through
four. Inevitably, the division between the first and the third activity depends
on the availability of top-down architectural information. In a fully bottom-up
service composition, the first activity can be omitted altogether, by relying on
modelling concrete services in the third activity. This way, the division aims at
balancing between bottom-up composition of services and top-down, typically
cross-cutting architectural constraints.

The second aspect, the level of dynamism, is mainly determined by the time
when the activities are performed. The more activities are performed at run-
time, the higher the level of dynamism. Therefore, dynamism is not just about
composing services dynamically, like is suggested in the taxonomy of composing
adaptive software [9]. Instead, it should be separated whether also composition
model knowledge is created and processed dynamically. In the simplest dynamic
case, the initial and final composition configurations are created at runtime (ac-
tivities five and six in Fig. 3), but composition models are created before run-
time. However, in a very dynamic case, both the composition model as well as
composition configurations are created at runtime.

Running example. The first and second activities in Fig. 3, which model
and check the service architecture, are performed at design-time. In contrast,
available services and related constraints can be added and removed at runtime,
as part of the service registration; this implies that the third and fourth activities

190 V. Myllärniemi et al.

Fig. 4. Some example ways of allocating responsibilities of creating and managing
knowledge. Each rounded rectangle represents one realm of responsibility for one actor.

are performed dynamically. Finally, the fifth and sixth activity are performed
dynamically when the user starts a new session, subscribes to new services, sets
personal preferences, or otherwise changes the options or requirements affecting
the required service composition. ��
The third aspect, the support for decentralisation, depends on how different
parties participate in performing the activities, and how the resulting knowledge
is managed. This is discussed further in the next section, which covers the roles
and responsibilities related to the activities.

3.3 Responsibilities and Roles

In addition to the architectural knowledge (Section 3.1) and activities (Sec-
tion 3.2), it should be established who is responsible for managing the knowl-
edge and performing the activities. Fig. 4 illustrates four different ways of allo-
cating responsibilities between different actors. Fig. 4(a) corresponds to a fully
centralised situation in which both composition model and composition configu-
rations are governed by one party. Fig. 4(b) corresponds to a situation in which
some services are governed by separate parties, but composition models and
compositions are collected by one actor. Fig. 4(c) depicts a situation in which
several parties govern some parts of the composition model knowledge, but this
knowledge is integrated into one in order to find and validate composition con-
figurations. Finally, Fig. 4(d) illustrates a situation in which different parties
do not trust each other enough to share any composition knowledge, but com-
position configuration is found and validated against fragments of composition
models.

Running example. The search scenario corresponds to Fig. 4(c); some services
and their composition model knowledge are created and managed by separate

Approach for Dynamically Composing Decentralised Service Architectures 191

shops. However, because of the existence of the central shopping mall, it makes
sense to collect an integrated composition model to the shopping mall. The ben-
efit of such centralised knowledge is that one can validate all composition con-
figurations against this centralised model. The composition model is collected
to the portal server. When new shop services are registered to the mall, compo-
sition model fragments are also registered, which describe the registered service
types, their interfaces, and relevant constraints. ��
The division of responsibilities can be evaluated against dynamism, decentralisa-
tion, and cross-cutting constraints. Firstly, dynamism affects how relationships
between different roles can be established. If new actors can emerge dynamically,
there must be a mechanism for discovering those actors, and consolidating their
possible composition model fragments. In our running example, this is imple-
mented with new shop services being registered to the mall portal. Secondly, the
level of decentralisation mainly determines how responsibilities are divided. The
more the responsibility for performing the activities and managing the knowl-
edge is distributed, the higher the level of decentralisation. Finally, the division
of responsibilities affects how cross-cutting constraints are managed. If most
cross-cutting constraints can be defined by one party, like in our running exam-
ple by the mall portal, it is easier to manage them as part of the composition
model. In contrast, handling cross-cutting constraints in Fig. 4(d) can only rely
on specifying the properties of other services through their interfaces.

4 Comparison to Previous Work

This section compares the approach described in Section 3 to existing literature.
The comparison evaluates the literature from the points of view of dynamism,
decentralisation, and cross-cutting (especially security) constraints.

There are a wealth of studies on runtime architectural adaptation and adapt-
ability. In general, software adaptation can be categorised to be either parame-
terised or composed [9]; typically architectural adaptation addresses the latter.
Studies on composed adaptation stem from architectural description language
studies [10], software product families and software variability [11,12,13], or from
adaptive software in general [14,15]. Typically, these approaches adapt an ex-
isting architecture based on an adaptation model that has been defined pre-
runtime; hence they do not address whether adaptation models are also adapted
dynamically. In some cases, e.g., in [12], the dynamism is limited to selecting
among predefined compositions resolved before runtime. Some of these dynamic
approaches address also decentralisation. For example, [16] provides an overview
of dynamic evolution of distributed, component-based systems. However, de-
centralisation typically means that composed elements are distributed; further,
some kind of centralised adaptation model still exists to govern the composition.

In many respects, [17] is close to our approach, since it addresses dynamic
adaptation and distributed systems, and it provides a mechanism for constrain-
ing compositions using utility functions, which are matched to the adaptation
needs of the system, compared to explicit constraints in our approach. However,

192 V. Myllärniemi et al.

this approach is oriented more towards adapting single systems for one user
with possibly distributed resources, not towards adapting truly decentralised
systems. Further, such component-based approaches require special middleware
to be present in the adapting system.

A study that applies software product family techniques for dynamic Web
personalisation with varying privacy constraints has been presented in [18]. Sim-
ilar to our approach, it addresses personalising the Web experience, while using
simple boolean constraints to specify privacy concerns. However, their aim is to
find an architecture consisting of User Modeling Components, which encapsulate
personalisation methods, e.g., used recommendation algorithms. In contrast, our
aim is to find and validate an architecture consisting of Web-based services.

Essentially, the principles of service-oriented architecture (SOA) and service-
oriented computing (SOC) promise to deliver distributed, independent services
that can be discovered and composed dynamically [19]. However, most ap-
proaches do not address truly dynamic, adaptive compositions, but different
dynamic and adaptive aspects of service compositions are still research chal-
lenges [20].

For decentralisation, SOC does not assume anything about the location of the
services participating in the composition. However, many facets of SOC still rely
on having centralised knowledge, based on which compositions can be formed.
For example, business process notations, such as BPEL, that orchestrate one
service composition, are typically created statically and governed by a centralised
engine. An example of a more dynamic approach for composing services using
process descriptions is proposed in [21]. However, this approach does not discuss
the decentralisation of the required knowledge, nor the possibility for cross-
cutting constraints.

The artifacts in our approach have been described using a notation that re-
sembles WSDL [5]. At the abstract level, WSDL describes message types, port
types and operations; port types roughly correspond to interface types in our
solution. However, there are several differences. WSDL is oriented more towards
describing properties of a single service. Therefore, it cannot be used for ex-
pressing constraints among services that cross-cut many services. Further, our
approach is more explicit in describing varying rules of combining elements in
the services. Further, Web Services are much more complicated compared to
the simple request-response operation mode of Web-based services in our case
example. Finally, WSDL does not separate between composition model and com-
position configuration, but describes services only at the level of a composition
model.

The tenets of SOA highlight the importance of flexibility and autonomous
services. Therefore, imposing cross-cutting security constraints becomes a chal-
lenge. Security solutions for SOA have been categorised to comprise of message-
level security, security as a service, and policy-driven security [22]. Out of these,
policy driven security, such as WS-Policy and WS-SecurityPolicy for Web Ser-
vices, resembles our approach for declaratively specifying constraints. Although
implementing security as a service could encapsulate security constraints across

Approach for Dynamically Composing Decentralised Service Architectures 193

many services, it is limited to certain scenarios. Message-level security, with WS-
Security extension for Web Services, is mainly interested in protecting service-
to-service communication.

Finally, current composition support in SOA is complicated for end users
when building their own applications [23]. Consequently, mashups have emerged
as a light-weight method of composing Web-based services. Several composer
tools aimed at easy composition of Web-based services have emerged, including
Marmite [24] and YahooPipes [25]. Marmite and YahooPipes both support a
data flow architecture, where data is processed by a series of operators in a
manner similar to Unix pipes. Thus both are suitable for manipulating and
combining, e.g., Web feeds. However, while visual mashup composers provide a
more user-friendly approach for service composition than SOA techniques, they
still require the user to construct and validate the composition herself. Within
our approach, the finding and validation of a composition is made completely
invisible to the end users, since these activities can rely on the rules set in the
composition model. Finally, current mashup composers do not address security,
nor provide means for specifying cross-cutting security constraints.

5 Discussion

The following discusses the approach and lays out future work items.
Section 3 described the knowledge as well as the activities required for au-

tomating compositions. A tool suite for the automation should consist of the
following three tools. Firstly, a graphical modelling tool is needed to produce
and check initial composition models in XML. Secondly, a tool is needed to reg-
ister concrete service types at runtime and consequently check the validity of the
resulting composition model. Depending on the decentralisation, several instan-
tiations of such a tool can be deployed at a time. Thirdly, a tool is needed to
find and validate composition configurations at runtime; this tool should utilise
smodels [8] inference engine.

Another issue that is not addressed is instantiating and executing the service
composition after the composition configuration has been found. In general,
this requires the integration between composition process and used technologies.
However, compared to dynamically adaptable component-based approaches,
there is no need to shut down or start up components in order to deploy the
composition, since services are already deployed and running. On the downside,
executing the service composition must not rely on the availability of the services
in the composition, since previously available services may not be available at
the time of execution. Thus, in an extreme case, dynamism does not cover only
service composition, but also services in the composition can appear or disappear
dynamically.

The activity six in Fig. 3 could be elaborated further to take into account a sit-
uation in which there are several competing services and thus several competing
composition configurations that match the options and requirements stated in
activity five. The running example in this paper was such that all search services

194 V. Myllärniemi et al.

that did not violate against the authentication constraints could be included in
the composition. However, there could be several mutually exclusive alternative
services, among which selection should be made. If activity six in Fig. 3 results
in several possible composition configurations, the approach can be augmented
with a selection or optimisation algorithm.

This paper addressed security as a non-functional property to illustrate cross-
cutting concerns. Security constraints often cross-cut many services in the ar-
chitecture, therefore requiring them to be considered during the composition.
The constraints in this paper were rather functional; this is typical for security.
However, in order to address quality properties expressed in numeric metrics,
such as availability or performance, the approach could be extended. Firstly, the
conceptualisation should be able to capture numerical quality properties of inter-
faces and services. Secondly, the approach could include a means of evaluating
the overall quality property of the composition based on the quality proper-
ties of constituent services; this can utilise existing methods available for, e.g.,
predictable assembly [26].

Finally, our approach does not address the semantics of modelling constructs.
The more knowledge is decentralised, the more semantic issues are bound to
rise. Within the field of service-oriented computing, semantic issues have been
studied. However, such considerations are out of the scope of this paper.

6 Conclusions

In this paper, we presented an approach for dynamically finding and validating
decentralised service compositions with cross-cutting security constraints. The
approach is knowledge-based in the sense that it relies on capturing architecture
and rules of the compositions and then utilises the collected knowledge to find
and validate compositions. For our approach, we presented the knowledge that
needs to be captured, the activities that create and manage knowledge, and
responsibilities related to knowledge and activities. Although there has been
considerable work regarding distributed, dynamic, and cross-cutting constraints
in architecture modeling, the issue has not been sufficiently covered in our view.
As our related work survey shows, most related works address one of these
aspects; for instance, our running example could not be fully covered by state
of the art works. However, the approach is still lacking tool support as well as
integration with service implementation technology. As a future work item, we
aim to build tool support that utilises existing inference engine smodels [8] for
validating the compositions.

References

1. Murugesan, S.: Understanding Web 2.0. IT Professional 9(4) (2007)
2. Bosch, J.: Service orientation in the enterprise: Towards mobile services. IEEE

Computer 40(11) (2007)
3. van Gurp, J., Prehofer, C., di Flora, C.: Experiences with realizing smart space

Web service applications. In: Proc. of Consumer Communications and Networking
Conference (CCNC) (2008)

Approach for Dynamically Composing Decentralised Service Architectures 195

4. OpenID: http://openid.net/
5. WSDL: http://www.w3.org/tr/wsdl
6. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala compo-

nent model for consumer electronics software. IEEE Computer 33(3) (2000)
7. Asikainen, T., Männistö, T.: Nivel: A metamodelling language with a formal se-

mantics. Software and Systems Modeling (to appear)
8. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model

semantics. Artificial Intelligence 138(1–2) (2002)
9. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing adaptive

software. IEEE Computer 37(7) (2004)
10. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT

Software Engineering Notes 21(6) (1996)
11. Lee, J., Kang, K.: A feature-oriented approach to developing dynamically recon-

figurable products in product line engineering. In: Proc. of Software Product Line
Engineering Conference (SPLC) (2006)

12. Gomaa, H., Saleh, M.: Feature driven dynamic customization of software prod-
uct lines. In: Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 58–72. Springer,
Heidelberg (2006)

13. van der Hoek, A.: Design-time product line architectures for any-time variability.
Science of Computer Programming 53(3) (2004)

14. Ye, J., Loyall, J., Shapiro, R., Neema, S., Abdelwahed, S., Mahadevan, N., Koets,
M., Varner, D.: A model-based approach to designing QoS adaptive applications.
In: Proc. of Real-Time Systems Symposium (RTSS) (2004)

15. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjørven, E.: Using
architecture models for runtime adaptability. IEEE Software 23(2) (2006)

16. Fung, K.H., Low, G., Ray, P.K.: Embracing dynamic evolution in distributed sys-
tems. IEEE Software 21(2) (2004)

17. Alia, M., Hallsteinsen, S., Paspallis, N., Eliassen, F.: Managing distributed adapta-
tion of mobile applications. In: Indulska, J., Raymond, K. (eds.) DAIS 2007. LNCS,
vol. 4531, pp. 104–118. Springer, Heidelberg (2007)

18. Wang, Y., Kobsa, A., van der Hoek, A., White, J.: PLA-based runtime dynamism
in support of privacy-enhanced Web personalization. In: Proc. of Software Product
Line Engineering Conference (SPLC) (2006)

19. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2005)

20. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented comput-
ing: State of the art and research challenges. IEEE Computer 40(11) (2007)

21. Vuković, M., Kotsovinos, E., Robinson, P.: An architecture for rapid, on-demand
service composition. Service Oriented Computing and Applications 1(4) (2007)

22. Kanneganti, R., Chodavarapu, P.A.: SOA and Security. Manning Publications
(2007)

23. Xuanzhe, L., Yi, H., Wei, S., Haiqi, L.: Towards service composition based on
mashup. In: Proceedings of IEEE Congress of Services (2007)

24. Wong, J., Hong, J.: Making mashups with Marmite: Towards end-user program-
ming for the Web. In: Proc. of Computer/Human Interaction Conference (2007)

25. Trevor, J.: Doing the mobile mash. IEEE Computer 41(2) (2008)
26. Crnkovic, I., Schmidt, H., Stafford, J., Wallnau, K.: Anatomy of a reseach project

in predictable assembly. In: Proc. of 5th Workshop on Component-Based Software
Engineering (2002)

http://openid.net/
http://www.w3.org/tr/wsdl

Architectural Prototyping in Industrial Practice

Henrik Bærbak Christensen and Klaus Marius Hansen

Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Århus N, Denmark
{hbc,klaus.m.hansen}@daimi.au.dk

Abstract. Architectural prototyping is the process of using executable
code to investigate stakeholders’ software architecture concerns with re-
spect to a system under development. Previous work has established this
as a useful and cost-effective way of exploration and learning of the design
space of a system, in addressing issues regarding quality attributes, in ad-
dressing architectural risks, and in addressing the problem of knowledge
transfer and conformance. Little work has been reported so far on the ac-
tual industrial use of architectural prototyping. In this paper, we report
from an ethnographical study and focus group involving architects from
four companies in which we have focused on architectural prototypes.
Our findings conclude that architectural prototypes play an important
role in resolving problems experimentally, but less so in exploring alter-
native solutions. Furthermore, architectural prototypes include end-user
or business related functionality rather than purely architectural func-
tionality. Based on these observations we provide recommendations for
effective industrial architectural prototyping.

1 Introduction

In practice, software architecture [21,3] design is a complex design process in
which technical requirements (e.g., in the form of functional and quality require-
ments or technology platform constraints) needs to be balanced with organiza-
tional reality (e.g., stakeholder needs and concerns or organizational constraints).
Often this must take place within an iterative and incremental development
process where requirements and constraints may change frequently and funda-
mentally. The architect has numerous techniques at his disposal that we may
categorize as follows:

– Theoretical techniques. These techniques support software architecture
design, evaluation, or implementation through argumentation that tries to
convince stakeholders of a specific theory (which could, e.g., be a specific
architectural design that tries to resolve specific quality attribute require-
ments). Theoretical techniques abound, examples being quality attribute
scenarios [3], architectural patterns [4], view-based documentation tech-
niques [16], and scenario-based evaluation methods [14].

– Experimental techniques. These techniques involve some form of demonstra-
tion to stakeholder of software architecture to inform their decision making.

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 196–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Architectural Prototyping in Industrial Practice 197

This can be, e.g., either through demonstration of the final system or through
demonstration of aspects of the architecture. Examples of such techniques
include simulation [8], prototyping [1,2], and scenario-based methods with
explicit stakeholder involvement [14].

Both types of techniques are important, but arguably for development processes
that involve a high degree of uncertainty and change, experimental techniques
(in general) have increasing importance since tangible demonstrations to stake-
holders are needed throughout the project [17,11].

For most techniques, few studies have been made of their (industrial) prac-
tical use. In this paper, we focus particularly on the experimental technique of
architectural prototyping, providing new insight into the practical, industrial use
of this technique. Architectural prototyping may be defined as:

An architectural prototype consists of a set of executables created to
investigate architectural qualities related to concerns raised by stakehold-
ers of a system under development. Architectural prototyping is the pro-
cess of designing, building, and evaluating architectural prototypes [1].

This definition is rendered as an ontology in Figure 1. Bardram et al. [1] provided

Architecture

System

Architectural
Quality

Concern

Stakeholder

Architectural
Prototype

Executable

*

has
1..*

has1..*

is important to 1..*

1..*

1..*

motivated by

1..*

investigates

1..* includes

implements

has an

Fig. 1. Architectural prototype ontology (adapted from [1])

examples of architectural prototypes and (following [10]) classified architectural
prototypes in terms of objective of construction1:

– Exploratory architectural prototypes are constructed in order to explore the
architecture design space. Often, several alternatives are constructed, ana-
lyzed, and executed in order to come up with a solution to a posed problem

– Experimental architectural prototypes are constructed in order to evaluate
a specific architectural decision. Often, a single prototype is constructed and
evaluated

1 In practice, of course, the construction of a specific architectural prototype may have
several types of objectives

198 H.B. Christensen and K.M. Hansen

– Evolutionary architectural prototypes are constructed as a series of proto-
types in which each prototype build upon the previous. Often, such a pro-
totype leads to a skeleton system in which little functionality is present, but
where a software architecture design is implemented that is used as a basis
for producing a final system2

Furthermore, architectural prototypes may be characterized as

1. being constructed for exploration and learning of the architectural design
space, i.e., they are constructed to learn about the effect of architectural
decisions largely ignoring the intent of the system,

2. addressing issues regarding quality attributes, i.e., a main motivation for
building an architectural prototype is often to measure (or observe) the qual-
ity implications of a decision,

3. not providing functionality per se, i.e., little or no business and end-user
functionality is implemented,

4. addressing architectural risks, i.e., the driver for architectural prototyping is
often an attempt to address or mitigate a risk in architectural design, and

5. addressing the problem of knowledge transfer and architectural conformance,
i.e., architectural prototypes may be used after construction to ensure that
developers learn about the architecture and that knowledge about the archi-
tecture is transferred through code [1].

In [1], these claims were validated through the case study of a set of research
architectural prototypes. In this paper, we investigate the characteristics and
extent of architectural prototyping through an investigation of current architec-
tural practice.

Paper Outline

The rest of this paper is structured as follows: First, we describe the research
project, SA@Work, involving software architects from four companies, in which
the work reported here has taken place (Section 2). Next, we present accounts of
architectural prototyping based on field studies (Section 3) and on focus groups
(Section 4). These accounts are then analyzed (Section 5) and finally we discuss
related work (Section 6) and conclude (Section 7).

2 The SA@Work Project

The research has been carried out in the context of the SA@Work project; the
project has been further described in [6,7]. The SA@Work project is a one and a
half year project that started August 2007. It involves software architects from
four Danish companies chosen among others because they represent a diversity
of application domains. In the following, we briefly describe each company:

2 This is, e.g., what the Rational Unified Process advocates [15].

Architectural Prototyping in Industrial Practice 199

1. Bang & Olufsen (BeO) produces high end audio products, television sets,
and telephones. The company was founded in 1925, in Struer, Denmark.
Since the beginning the company has focused on creating quality products.
The IT-organization of B&O consists of offices in Struer and Århus (Den-
mark) and a subsidiary in Estonia, furthermore they work with a consultancy
company in India.

2. DSE A/S was established in 1981 in Horsens. The present company is di-
vided into two divisions, Test and Airport, with respective markets. We
have followed architects in the airport division that employs approximately
18 persons. The DSE Airport Solutions division supply IT-based solutions
for Danish and international airports including ATC (Air Traffic Control)
and CNS (Communication, Navigation and Surveillance) /ATM (Air Traffic
Management).

3. Jyske Bank (JB) is the second largest independent Danish bank, employ-
ing some 4,000 people in 119 Danish branches. The IT organization of Jyske
Bank is the largest in Jutland, designing, implementing, and running the sys-
tems of Jyske Bank in addition to processing central-government payments
and operating a payroll system for the Danish counties.

4. Systematic Software Engineering (SSE) is Denmark’s largest privately owned
software company. It was founded in 1985 and has since grown to over 400
employees, 50 of these employed in the UK and USA. SSE is certified in
process maturity at CMMI level 5. The main business areas are mission
critical systems for the defense and healthcare sectors.

The SA@Work project has two phases:

Phase 1 Fields studies of architectural practice. In this phase we have followed
architects in their work for one and a half to two weeks using ethnograph-
ical techniques to observe and record actions, collaborations, artifacts, etc.
The observations have been complemented with interviews and document
analysis.

Phase 2: Collaboration between practicing architects and researchers. During
this phase particular aspects of architectural work are identified that could
be improved, and collaboration executed (intervention).

In the following sections, we report from both these phases with particular focus
on architectural prototyping. Section 3 relates findings made during field studies
of software architects and Section 4 relates finding made during focus groups
with practicing software architects.

3 Field Studies of Architectural (Prototyping) Practice

In the first phase of the project we did a bottom-up, ethnographically-inspired
study of software architects. Concretely, each company designated a software ar-
chitect that we would follow, observe, and interact with. Specifically, we applied
“participatory observation” in which we engaged with the software architects as
necessary and did this akin to Miluk’s “rapid applied ethnography” process [19].

200 H.B. Christensen and K.M. Hansen

BeO

DSE

SSE

JB
Aug Sep Oct Nov

BeOBeO BeOBeO BeO BeO

DSE DSE

JB JB

2007

SSESSE SSE

 Dec

Fig. 2. Schematic overview of observations and interviews in SA@Work

The reason for using observations in this phase was two-fold: 1) we wanted to
be as open as possible in our conception of actual architectural practice (while
acknowledging, though, that we had prior knowledge of the filed and that the
presence of an observer changes what is being observed. In the analysis of ob-
servations, the presence of the observer thus has to be taken into consideration
as noted in, e.g., Hammersley’s and Atkinson’s “reflexive realism” [12]). 2) ret-
rospective accounts such as interviews are often inaccurate because interviewees
may not remember details about their work practice and may also not know
what is important or relevant for researchers to know.

Figure 2 shows a timeline of the Phase 1 interactions with software architects
covering both observations and interviews. The exact timing and extent of the
observations at the individual companies depended on the availability of archi-
tects and researchers, but we aimed at having five days of observation at each
company.

One striking commonality between work practices of the architects was that
the daily activities of software architects are very diverse and may change fre-
quently according to project needs. This also means that specific architectural
techniques were often only glimpsed, something that is also true for architectural
prototyping. We only observed direct programming and/or execution of archi-
tectural prototypes in a few cases, but through the observation and followings
interviews, we tentatively concluded the following:

– Architectural prototypes are important. In all companies, critical architec-
tural decisions (such as the choice of a user interface platform or a remote
procedure call middleware) had been taken based on the construction of ar-
chitectural prototypes. However, architectural prototypes complement other,
theoretical, architectural techniques more than being an essential technique
in its own right. It was however not clear to which extent architectural pro-
totypes were used and what were their precise characteristic?

– Architectural prototyping needs opportunistic planning. All companies in our
study used an iterative and incremental development approach in which the
activities of the software architect did not fit well [7]. Architectural prototyp-
ing was often initiated due to uncertainties or risks in the activities that were
part of the iterative process, meaning that architects often had to take time
out of their schedule to do prototyping (or even do them at home). One issue
that was not clear was in which phase (e.g., inception, elaboration, construc-
tion, or transition as in [15]) architectural prototyping was most useful?

Architectural Prototyping in Industrial Practice 201

– Architects (and developers) code architectural prototypes. In most cases, the
software architects themselves programmed architectural prototypes (often
because they were the experts of the (technical) domain being investigated);
at other times, architects specified the architectural prototype and a (lead)
developer would code the prototype. How the construction of architectural
prototypes fitted into the rest of the system construction was, however, not
clear?

Among others to investigate these issues further, we initiated two focus groups
with software architects on architectural prototyping. The results of these are
presented next.

4 Case Studies of Architectural Prototyping

The case studies were presented on two focus group workshop. For practical
reasons, architects from three of the companies were present at one focus group
workshop and architects from the last company were present at a separate focus
group workshop. The architects were in both cases given a homework assignment:
they had to review their past use of coding practices in their architectural work
to identify between three and four instances of using experimental, code-based,
analyses or techniques in their architectural work. Furthermore, they were asked
to present one of the instances in technical detail at the focus group. They were
also given the paper “Architectural Prototyping: An Approach for Grounding
Architectural Design” by Bardram et al. [1] as part of the initial assignment.

The first focus group seminar lasted about six hours and the last lasted about
two hours. In both cases, it consisted of an introduction by the authors, describ-
ing the definition and characteristics of architectural prototype based upon the
aforementioned paper. Next, the companies presented the instances of using ar-
chitectural prototypes and questions and clarifications were asked by researchers
as well as the attending architects. The seminar ended by an analysis of the pri-
mary cases of architectural prototypes. This analysis was lead by the authors.
The analysis went through each primary case study from the companies and
clarified whether the aspects and characteristics set forth in [1] were applicable
or not.

Below the main case study of each company is presented.

4.1 Bang and Olufsen

The Bang and Olufsen software architect described a “vertical demo” for a media
library browser for a new line of audio-visual products. This new line is based
upon a product-line architecture that is presently being developed. The device
must enable users to have a high quality browsing experience of a centrally stored
library of available audio and video streams including images and text.

Several architectural aspects were planned to be explored in the prototype:

– verification of the communication channel (the connectors) between the var-
ious devices, including media server, connections, and the device

202 H.B. Christensen and K.M. Hansen

– analysis of the response times in the system under various scenarios
– analysis of power management and experimentation and verification of the

present architecture for this aspect
– analysis of discovery protocol behavior in various scenarios like device out-

of-range and radio signal shut down
– analysis if the selected technologies “plays well together”

As e.g. audio sources are browsed by showing album covers the prototype
included full graphics to verify rendering quality and performance.

4.2 Jyske Bank

The architect from Jyske Bank described a large experimental effort to prototype
the layering aspects of a novel service oriented architecture that at the moment
is being introduced at the enterprise level to supplement and partially replace
the present architecture. The layering is a traditional three-tier layering with
data, business, and presentation layers but using a service oriented approach.

The architectural aspects to be investigated were:

– verification and exploration of proper layering in the architecture with em-
phasis on achieving loose coupling and low maintenance costs

– verify that adequate performance was still attainable
– verify the security aspects could be implemented in the layered SOA model
– analyze with respect to stability and 24/7 service

The infrastructure was prototype developed along with an example appli-
cation of using it. The example application is a Jyske Bank internal teaching
example, KAOS, that is course administration system. The KAOS system is
well known to the entire bank’s IT staff as they have all gone through the same
internal training.

4.3 Systematic Software Engineering

A Systematic Software Engineering software architect presented a “frontier run”
(Danish: “Frontløb”) which is the company’s term for executables that explore
technological or architectural issues. The application explored how to add a
hand-held personal digital assistant (PDA) to the company’s Columna product
which is an electronic patient record (EPR) infrastructure.

The purpose for the prototype was:

– exploration of technical challenges of WiFi communication with PDAs using
a proprietary RMI system with large data objects

– exploration of the Windows CE programming model
– analysis of how to make a SOA architecture on Windows CE
– exploration of how to make web services on the Columna server

Architectural Prototyping in Industrial Practice 203

The process actually started as two disjoint prototypes, one experimenting
with Windows CE and the other experimenting with SOA. As they evolved and
architectural decisions matured and stabilized, the two prototypes grew into a
single one. The architecture prototype code was after the process thrown away
but the architectural learning lead into adopting the architecture as the reference
model for SOA for Columna.

4.4 DSE

The software architect from DSE presented VERDI that is an ongoing project
to upgrade an existing map application for the Danish authorities’ readiness to
handle natural disasters. The upgrade was to provide vastly more detailed maps
that put high demands on data transfer and especially graphical map rendering
performance.

Several prototypes were crafted in an exploration phase for:

– risk analysis as it was not obvious whether to take on the project at all as the
existing legacy application ran on ten year old frameworks and hardware.

– assessment of whether the developed technologies/components as well as the
learning outcome would enrich the company’s portfolio of products as the
application was somewhat outside the current set.

– exploring Microsoft WPF (Windows Presentation Foundation) technologies
to replace the rendering engine.

– explore performance and optimization issues with respect to rendering speed
to support usability.

The process included prototypes for learning and experimenting with reading
and rendering a new vector-based map data format and next a whole series of dis-
joint prototypes to assess rendering performance using various WPF techniques.
Next several prototypes were constructed as bit mapped maps were included
and a rewrite of the rendering engine as WPF could not handle the performance
requirements.

5 Analysis

In this section, we will present how the characteristics of architectural prototypes
(see Section 1) were matched against the concrete cases described above.

Ad 1: Exploration and Learning

This characteristic was considered essential for all case studies by their archi-
tects. This was perhaps especially true for the Systematic Software Engineering
Columna PDA scanner system where the architect and the development team
faced a device (PDA) and a technological platform (Windows CE) that was
more or less unknown. DSE also faced new technology for the rendering engine
in VERDI and several prototypes were made to find a WPF technique that

204 H.B. Christensen and K.M. Hansen

could handle the performance issues. Bang and Olufsen stressed that using Re-
mote Method Invocation (RMI) systems in the prototype was a relatively new
issue to be explored.

Ad 2: Quality Attributes

The software architects all agreed that analysis of the quality attributes were
a primary driver for their architectural prototyping. This is also evident from
the motivation for the prototypes as outlined in the previous section: Bang and
Olufsen analyzed performance metrics like response time and power manage-
ment; Jyske Bank explored maintainability and availability metrics like layering
and 24/7 service; Systematic Software Engineering explored performance and
buildability aspects like SOA performance and Windows CE learning issues; and
DSE assessed the same qualities, buildability and performance, in the VERDI
prototype set.

Ad 3: No Functionality Per se.

In our previous work we have postulated that architectural prototypes do not
include non-architectural functionality such as business logic, end-user interfaces
etc., but only contains code central for the quality attributes being evaluated.
As an example, in two of the cases the architects stressed the need to see “data
flowing from end-to-end”: Bang and Olufsen needed to see album data getting
from the media server to the device within the allowed response time while Jyske
Bank needed to see data flowing from the databases all the way “to the glass”
(i.e., the user interface) even in the face of handling three million database rows.
But for instance in the Bang and Olufsen case there was no need to graphi-
cally render cover images nor even have the media server containing real data. If
response time is the issue it would suffice for the hand held device simply to mea-
sure round-trip times between issuing a request and receiving an appropriately
sized chunk of data.

However, all prototypes contained quite a lot of non-architectural function-
ality. The Bang and Olufsen prototype media server contained real album data
and the device rendered graphics. The Jyske Bank prototype contained user
interface functionality, and the Columna PDA Scanner did scan real medicine
bar codes. For the two first prototypes, the architects stressed that they were
used also for demonstration to (business) stakeholders, not just for architectural
evaluation. Nevertheless, they were in no way fully functional systems, but the
important point here is that they did include non-architecturally relevant code.

The DSE case is perhaps a bit special in this respect because a primary
concern was the risks associated with the technology update and the rendering
performance. Thus one can say that the architectural challenge indeed was the
graphical functionality.

Ad 4: Risks

The case studies presented by Bang and Olufsen and Jyske Bank were both
examples of architectural prototypes constructed after a period of theoretical

Architectural Prototyping in Industrial Practice 205

architectural analysis, that is, brain storming, reviews, discussions, and other
techniques that rely on abstract artifacts like UML diagrams, rich pictures, ar-
chitect’s experience and gut-feeling, etc. Therefore many alternative architecture
proposals had already been weeded out before the architectural prototyping
processes were initiated. Therefore these prototypes have the flavor of skeleton
systems. Nevertheless both companies considered the prototype building a way
to assess and control risk. For instance, Jyske Bank mentioned their concern
whether the new layered architecture would perform adequately when “process-
ing three million rows?” and the prototype was used to answer this important
question. Bang and Olufsen stated that the prototype’s properties decided the
“go/no-go” commitment for the proposed architecture.

The PDA prototype described by the architect from Systematic Software En-
gineering was more exploratory in that the company had little experience with
the Windows CE platform on PDA devices and therefore even less idea about
how to architect SOA on it. Therefore the prototype building was essential both
to achieve confidence in programming the technological platform as well as ex-
ploring SOA. Therefore it was a crucial risk management tool.

Finally, the DSE VERDI architectural prototyping effort was most certainly
driven by risk assessment as the company reserved the right to decline taking
on the project if the result of the prototyping process would indicate too high
risks and too little gains from the company’s perspective.

Ad 5: Knowledge Transfer and Conformance

Also in this respect the architects generally agreed on the important property of
communication with developers. For instance the Jyske Bank layering prototype
was constructed using the KAOS course management system as instantiation
instead of the real goal, namely banking. One important property of KAOS is
that it is used for the internal training courses that the entire IT staff goes
through—therefore the KAOS domain is well known to all and it is very easy to
introduce the new architecture on the simpler KAOS domain. Another important
property was that a lot of template code emerged from the prototyping process
that is used by developers to ensure conformance with the intended architecture.

Systematic Software Engineering’s PDA prototype code was trashed after the
process and thus not used as conformance technique—however the key point of
the exercise was the knowledge gained for the architect and the development
team.

Bang and Olufsen stressed this property less but found that the architectural
prototyping process worked to increase knowledge transfer in the team.

The VERDI prototype set from DSE did not squarely fit this characteristics.
On one hand a lot of knowledge had been gained in the division regarding WPF
with respect to programming model and performance issues but on the other
hand it is less a matter of transferring architectural knowledge from the archi-
tect to the developers. Also the final “prototype” did match the performance
requirements and is therefore close to a product quality finished component.

206 H.B. Christensen and K.M. Hansen

Table 1. Characteristics of the cases. ’+’ indicates that the given architectural proto-
type exhibits the identified characteristics, ’–’ the opposite, while ’(+)’ indicates that
the characteristics is only partially present.

(1) (2) (3) (4) (5)

BeO: Content browser + + – + (+)

JB: SOA and application Layering + + (+) + +

SSE: Columna PDA Scanner + + (+) + +

DSE: VERDI + + (+) + –

5.1 Discussion

The results concerning reported architectural prototype characteristics are sum-
marized in Table 1. We conclude that four out of the five postulated charac-
teristics are supported by the empirical data whereas the fifth characteristics,
no functionality per se, is not always true for the observed cases. For instance
the Bang and Olufsen content browser prototype did include a working user in-
terface and it was real cover and album data that was delivered in the system.
One might argue that from a purely performance assessment perspective this is
a waste of implementation resources as performance conclusions could be made
by just pushing realistically sized byte arrays with nonsense data over the con-
nectors and simply measure at what pace they arrived. This would lower the
implementation burden as no real data should be put into the system and no
GUI implemented and thereby reduce costs. However, one property not stressed
in our previous work but stressed by several architects is the importance of
demonstration to stakeholders, typically business decision makers. As one ar-
chitect stated: “ ‘Have a look’ is the best argument.” If decision makers have
conflicting or impossible demands but cannot be persuaded, sometimes proto-
types are simply made to make it evident that they require the impossible. Thus
additional investments in implementation effort are made to make them into
working demonstrators.

Another classification of architectural prototypes as either explorative, ex-
perimental, or evolutionary is concerned with the architects’ focus on quality
attributes (cf. Section 1). While this distinction makes sense from a theoretical
stand point, the distinction appeared blurred in industrial practice. Most of the
prototypes selected by the software architects exhibited both explorative as well
as experimental traits and most were evolutionary. The architects found the dis-
tinction less interesting from a practical point of view as they failed to see the
operational aspects. Some of the prototypes exhibited all three characteristics,
like for instance in the DSE VERDI project in which several disjoint prototypes
were crafted, each exploring a particular WPF rendering technique, and thus
of an explorative nature, testing alternatives. However, they were all rejected as
they did not match the performance requirements, thus being of an experimental
nature. The present architectural prototype will now be part of an evolutionary
prototyping process to explore database issues in the system.

Architectural Prototyping in Industrial Practice 207

Another observation where architectural prototype usage differs from the pos-
tulates in [1] is with respect to using architectural prototypes to explore alter-
natives. In several of the cases outlined by the industrial software architects,
reasonably thorough but purely theoretical (in the sense outlined in Section 1)
analyses where made first until a single candidate architecture was identified
that stakeholders were sufficiently confident would match functional and archi-
tectural requirements. It was not until then prototyping was initiated. This is
more in line with the concept of architectural skeletal systems as described by
Bass et al. [3] or the usage of executable architectural prototypes in Rational
Unified Process.

We speculate that there is a relation between these two observations: several
of the prototypes are actually demonstrators and the same prototypes are also
more akin skeletal systems than early explorations (Bang and Olufsen and Jyske
Bank). The higher cost of making a demonstrator requires a stronger belief
that this is the right architecture to reduce risks of wasted effort. Perhaps this
experience even lessens the architect’s tendency to architectural prototype purely
architectural concerns.

6 Related Work

Few have written about the process of architectural prototyping [5,15,18]. Both
Christensen [5] and Mårtensson et al. [18] base their exposition on their own
experience with architectural prototyping and present a very simple framework
and process that does not capture the rich use of architectural prototyping as
outlined in this paper. The Rational Unified Process (as described in [15]) focus
on one type of architectural prototype, viz. an evolutionary architectural pro-
totype, and on a specific role of that prototype in the development process. In
all cases, the analysis presented in this paper extends the work by showing how
architectural prototyping is done in practice.

With respect to the qualitative and empirical research approach of the
SA@Work project (observations, interviews, focus groups and, eventually, action
research [22]) a sizable proportion of papers on software architecture argue their
claims empirically. As noted in [6], we, e.g., found that of 16 papers from WICSA
2007 [20], 8 can be classified as having validated their results empirically. This
is in contrasts to (much more thorough) investigations of the quantity of empir-
ical validation in software engineering. One study, e.g., identified 12% validation
through case studies (in 50 of 427 software engineering articles surveyed [13]).
Few research projects use an action research approach, though. One exception is
Farenhorst et al. [9] in which observations are followed by interventions in cycles.

7 Conclusion

The first important conclusion of the presented work is perhaps so obvious that
it may be missed, namely that it documents that architectural prototyping is
being used as an indispensable tool in the practicing software architects’ tool box.

208 H.B. Christensen and K.M. Hansen

Architectural prototypes are used as an important tool to design and evaluate
software architectures. The software architects, even experienced ones, trust the
architectural answers demonstrated by executing code more than the output of
brainstorming sessions, reviews meetings, and logical argumentation.

Next, we conclude that the five characteristics set forward as distinctive
characteristics of architectural prototypes and setting them apart from general
prototypes as defined by Floyd are generally observed in the set of architec-
tural prototypes crafted by the participating companies. Indeed, the architec-
tural prototypes are used to explore architectural designs, to learn about new
architectural tactics, to assess limitations and benefits of emerging technologies,
to reduce risks of taking the wrong decisions, to experiment with the balance
of quality attributes in architectural proposals, and to transfer knowledge and
ensure architectural conformance in the development teams. The only character-
istic that is somewhat doubtful is the claim that architectural prototypes provide
little functionality besides but rather is concerned with purely architectural is-
sues. Several prototypes were effectively stakeholder demonstrators.

We speculate that architectural prototyping is not generally taken to its full
potential by the software architects. The tendency to include demonstration
quality functionality necessarily increases the cost of the prototypes, perhaps
even substantially. This perceived “higher-than-necessary” cost may bias ar-
chitects towards not building prototypes even in situations where they would
provide more accurate answers to architectural dilemmas than theoretical tech-
niques. If this is true, even more gains can come from architectural prototyping
than reported in this work.

This speculation also hints at new directions in research. One aspect of ac-
tion research [6] is intervention where researchers join teams of practitioners to
introduce new techniques. Thus one may enter a project having architectural
challenges and test ways of making “cheap” architectural prototypes. Another
approach could be to analyze the prototype’s code base to estimate the amount
of “non-architectural” code to find the ratio.

Acknowledgements

The research presented in this paper has been partly funded by the
ISIS Katrinebjerg competency centre, Aarhus, Denmark (http://www.isis.
alexandra.dk). We thank the companies and software architects that partic-
ipated in the project. Finally, we thank Kari Rye Schougaard who performed a
main part of the field work.

References

1. Bardram, J.E., Christensen, H.B., Hansen, K.M.: Architectural Prototyping: An
Approach for Grounding Architectural Design. In: Proceedings of Fourth Working
IEEE/IFIP Conference on Software Architecture (WICSA4), Oslo, Norway, pp.
15–24 (June 2004)

http://www.isis.alexandra.dk
http://www.isis.alexandra.dk

Architectural Prototyping in Industrial Practice 209

2. Bardram, J.E., Christensen, H.B., Corry, A.V., Hansen, K.M., Ingstrup, M.: Ex-
ploring Quality Attributes Using Architectural Prototyping. In: Reussner, R.,
Mayer, J., Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J. (eds.) QoSA
2005 and SOQUA 2005. LNCS, vol. 3712, pp. 155–170. Springer, Heidelberg (2005)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley, Reading (2003)

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, Chichester (1996)

5. Christensen, H.B.: Towards an Operational Framework for Architectural Proto-
typing. In: Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2005), pp. 301–302 (2005)

6. Christensen, H.B., Hansen, K.M., Schougaard, K.R.: Ready! Set! Go! An Action
Research Agenda for Software Architecture Research. In: Proceedings of Working
IEEE/IFIP Conference on Software Architecture (WICSA) 2008 (2008)

7. Christensen, H.B., Hansen, K.M., Schougaard, K.R.: SA@Work - A Field Study of
Software Architecture and Software Quality at Work (under submission, 2008)

8. Clements, P., Kazman, R., Klein, M.: Evaluating software architectures: methods
and case studies. Addison-Wesley, Reading (2002)

9. Farenhorst, R., Izaks, R., Lago, P., van Vliet, H.: A Just-In-Time Architectural
Knowledge Sharing Portal. In: Proceedings of the Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA 2008), pp. 125–134 (2008)

10. Floyd, C.: A systematic look at prototyping. In: Budde, R., Kuhlenkamp, K., Math-
iassen, L., Züllighoven, H. (eds.) Approaches to Prototyping, pp. 1–18. Springer,
Heidelberg (1984)

11. Grønbæk, K., Kyng, M., Mogensen, P.: Toward a cooperative experimental system
development approach. In: Kyng, M., Mathiassen, L. (eds.) Computers and Design
in Context, pp. 201–238. MIT Press, Cambridge (1997)

12. Hammersley, M., Atkinson, P.: Ethnography. Principles in Practice. London & New
York, Routledge (1997)

13. Jørgensen, M., Sjøberg, D.: Generalization and Theory Building in Software Engi-
neering Research. Empirical Assessment in Software Eng. Proc., 29–36 (2004)

14. Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation.
Carnegie Mellon University, Software Engineering Institute (2000)

15. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley Pro-
fessional, Reading (2003)

16. Kruchten,P.:The 4+1viewmodel of architecture. IEEESoftware 12(6), 42–50 (1995)
17. Larman, C., Basili, V.R.: Iterative and incremental development. A brief history.

IEEE Computer 36(6), 47–56 (2003)
18. Mårtensson, F., Grahn, H., Mattsson, M.: An Approach for Performance Evalu-

ation of Software Architectures using Prototyping. In: Proc. Int’l Conference on
Software Engineering and Applications (SEA 2003), pp. 605–612 (2003)

19. Miluk, G.: Results of a field study of cmmi for small settings using rapid applied
ethnography. Technical Report CMU/SEI-2006-SR-001, Software Engeneering In-
stitute, Carnegie Mellon (2006)

20. Paulish, D., Gorton, I., Tyree, J., Soni, D. (eds.): Proceedings of Working IEEE/IFIP
Conference on Software Architecture (WICSA) 2007. IEEE, Los Alamitos (2007)

21. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging disci-
pline. Prentice-Hall, Upper Saddle River (1996)

22. Sjøberg, D., Dyba, T., Jørgensen, M.: The future of empirical methods in software
engineering research. In: International Conference on Software Engineering, pp.
358–378 (2007)

An Iterative Framework for Software

Architecture Recovery: An Experience Report

Banani Roy and T.C. Nicholas Graham

Queen’s University, Kingston, Ontario, Canada K7L 3N6
{broy,graham}@cs.queensu.ca

Abstract. Both architecture recovery and architecture evaluation play
an important role in the area of software reverse-engineering. In this pa-
per, we propose and evaluate a framework for incremental and iterative
application of automated architecture recovery (using SWAG Kit) and
architecture analysis (using SAAM.) We conclude that SWAG Kit helps
in generating a low-level architecture that forms the basis of analysis,
while SAAM helps in deriving from this a deeply understood concep-
tual architecture. The process is iterative, where SAAM analysis helps
refine the parameters fed to SWAG Kit, in turn leading to a superior
architecture for further analysis. We have applied this process to the
extraction of the architectures of three open source compression tools,
and we report on the strengths and weaknesses of the approach that this
case study exposed. Over all, we conclude that the framework allowed us
to understand the software architectures more deeply than would have
been possible with the software architecture recovery process alone.

Keywords: Software Architecture Recovery, SAAM, SWAG Kit, Iter-
ative Framework, Evaluation.

1 Introduction

Legacy software systems often lack adequate architectural documentation. When
present at all, architectural documentation is often inconsistent with the current
state of the system [22,6]. Lack of architectural documentation can make it dif-
ficult to bring new developers into the project or to methodically analyze the
effect of proposed architectural changes. To address this problem, numerous re-
searchers have proposed the use of automated tools to recover the architecture
of a system from its source code [6,19,14]. Architecture recovery tools such as
Rigi [27], Shrimp [29], SWAG Kit [30] and Dali [17] automate parts of the pro-
cess, requiring human guidance to create documentation of the architecture of
software systems.

Despite decades of research and considerable progress in the development of
such tools, they have yet to obtain wide-spread industrial adoption. In this pa-
per, we argue that the quality of software architectural recovery can be improved
by applying systematic analysis to the architectures generated by recovery tools.
Architectural analysis helps identify the questions that we wish our description of

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 210–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Iterative Framework for Software Architecture Recovery 211

an architecture to answer, in terms of non-functional requirements such as mod-
ifiability, security, usability and availability [1,3,7]. In this paper, we present a
framework for iteratively applying architectural recovery and architectural anal-
ysis. We present our experience in applying this method to the recovery of the
architectures of three open-source compression toolkits. To our knowledge, this
is the first experience report directly reporting on the benefits and limitations
of combining these two techniques.

In our study, we examine whether value is added to the process of archi-
tectural recovery by using an architecture evaluation method in addition to a
recovery tool. I.e., we address the question of wheher an architectural analysis
helps provide a deeper understanding of the architecture in the recovery process,
and whether it helps obtain a more accurate view of the architecture.

To help evaluate these questions, we have developed a framework that itera-
tively combines the SWAG Kit architecture recovery tool [30] with the SAAM
architecture evaluation method SAAM [7,16]. In this framework, a recovery tool
is first used to obtain a low-level architectural representation from the system’s
source. An architecture evaluation method is then applied to the extracted sys-
tem representation. The automated recovery and analysis steps are iteratively
applied until an acceptable architectural description is obtained.

We have applied this method to three open source compression applications/
libraries: ZLib [32], ZDelta [31] and GZip [15]. We applied SWAG Kit and SAAM
to each application using the iterative framework. Through this, we are able to
evaluate the benefits and weaknesses of the approach.

From the case study, we have learned several interesting lessons. We found
that software architecture recovery is weak at identifying subsystem structures.
In our experience, automatic decomposition of an architecture into subsystems
did not contain the information a programmer needs to answer maintenance
questions. E.g., the subsystem structure generated using SWAG Kit for ZDelta
failed to identify its encryption/decryption units. SAAM helps in refining sub-
system structure by helping to identify the questions that the architecture must
answer. For example, maintenance scenarios quickly identified the importance of
encryption/decryption in ZDelta, identifying the need to refactor the subsystem
decomposition.

We found that SWAG Kit is limited to producing a static architectural view
comprising components and connectors. SAAM evaluation requires a deeper un-
derstanding of how architectural components collaborate to accomplish a spe-
cific task suggested by SAAM’s scenarios. Both of these approaches benefited
from the iterative application of SWAG Kit and SAAM; as understanding of the
architecture increased via analysis, it was possible to improve the architecture
generated by SWAG Kit, which in turn resulted in improvements in the analysis.

Our experience shows that this iterative method is tractable for modestly sized
systems. The three compression applications to which we applied the method
were each approximately 10,000 lines of code in length. It took about one person-
week per application to apply the method and extract an architecture. When
scaling the approach to larger systems, we believe that the required time will vary

212 B. Roy and T.C.N. Graham

based on the architecture recovery tool and its browsing facilities, the domain
of the target application, the source code structure, the quality of comments in
the source code and the availability of good documentation.

Our experience shows that the architecture recovery team and the architecture
evaluation team should work closely together (or even be the same team), since
there is a tight and iterative interaction between the architecture recovery tool
and the evaluation process.

There are some limitations to this combined approach. For example, it was
difficult to define a terminating point for the iterative process. Also, it was
challenging to define appropriate scenarios for the evaluation process; if wrong
scenarios are chosen, the final architecture may remain unsuitable for future
analysis tasks. On balance, we conclude that despite these limitations, by itera-
tively applying architectural recovery and analysis, it is possible to gain a strong
understanding of a software architecture with modest time investment.

The organization of the paper is as follows. In section 2, we review other
techniques combining architectural recovery and evaluation. Section 3 explains
how SWAG Kit and SAAM can be combined to extract a software architecture.
In section 4, we illustrate the lessons that we learned from our case study, in
which we applied our method to extract the architectures of ZLib, ZDelta and
GZip. Section 5 concludes the paper.

2 Related Work

While there is significant literature on software architectural evaluation [16,10,8]
(for a comprehensive summary of all architectural evaluation methods see our
technical report [28]), little attention has been paid to its methodical application
to architecture recovery. Some methods propose the combination of architecture
recovery and architectural evaluation, but these approaches are purely sequential.

Lutz and Gannod [19], for example, have discussed the architectural anal-
ysis of a software product-line using a three-phase approach. The phases are
software architecture recovery, scenario-based assessment of the extracted ar-
chitecture and model checking of safety-critical behaviors. In contrast to our
iterative approach, Lutz and Gannod use a purely forward approach. The soft-
ware architecture is manually recovered from the available information and code
base, and is compared to an existing software architecture using a scenario-based
method. In this approach, the evaluation method plays no role in the recovery
process.

A similar approach has been proposed by Bowman et al. [6]. This technique is
based on dividing the software into subsystems based on its ownership architec-
ture. The ownership architectures are then compared with existing conceptual
architectures. Their study shows that ownership architecture is a good predictor
of concrete architecture and is closely correlated to the conceptual architecture.

In addition to scenario-based approaches, some metrics-based evaluation meth-
ods have been applied to evaluating extracted software architectures. Again, in
contrast to our iterative approach, these approaches are incremental. For example,

An Iterative Framework for Software Architecture Recovery 213

Medvidovic et al. [21] have quantitatively and qualitatively evaluated the Focus
architectural recovery approach by extracting and validating the two middleware
intensive systems: OODT [18] and the Globus Toolkit [12].

Guo et al. [14] have proposed a semi-automated architecture reconstruction
method. This method uses patterns to guide users in achitectural recovery. This
work is similar to ours in that it iteratively applies an architecture recovery
tool (the Dali Workbench [17]) and an architecture evaluation technique. Little
feedback is provided on the success of this iterative approach; the focus of Guo
et al.’s approach is on evaluating the pattern matching approach.

We conclude, therefore, that there is room for study of the effectiveness of iter-
ative application of automated architectural extraction and architecture analysis
to the task of software architectural recovery.

3 Framework

In this section, we describe our framework for recovering the software architec-
ture of legacy systems. We first explain how SWAG Kit supports automated
extraction of software architectures from source code, and then describe how
SAAM is used to evaluate the resulting software architecture. We then explain
how these two can be applied together to recover meaningful architecture of
legacy systems. In section 4, we report on our experience applying this framework
to the recovery of the architectures of three open-source compression libraries.

3.1 Automated Software Architecture Extraction

Two types of software architectures are useful for understanding a complex soft-
ware system: conceptual and concrete. A conceptual architecture provides an
abstract view of the system by hiding its implementation details [3]. A concrete
architecture shows the system as implemented. In this paper, we focus on re-
covering the conceptual architecture, as it serves our purpose of understanding
the components and their relationships of the implemented system. In order to
obtain a conceptual architecture, we use an architecture recovery tool to obtain
a concrete architecture. This concrete architecture is then evaluated, abstracted
and further refined into a conceptual architecture.

Architecture Recovery Steps: The general approach of recovering a software
architecture consists of the following steps [26]:

1. Determine the low-level system representation (concrete architecture) by
applying the architecture recovery tool on the source code of the target
applications.

2. Identify the architectural elements/components by combining domain knowl-
edge, design documents and the extracted low-level system representation.

3. Identify the relationships between the architectural elements to obtain a high
level architectural representation of the system.

214 B. Roy and T.C.N. Graham

In the first step of the architectural recovery, we use SWAG Kit [30] to auto-
matically extract the low-level system representation from the source code. We
chose SWAG Kit because it is a mature toolkit which can be used for extract-
ing, abstracting and exploring software architectures. This tool automatically
extracts architectures from calls information in C or C++ source. SWAG Kit
provides the LSEdit editor for visualizing and refining the architecture.

3.2 Software Architecture Analysis

The second major part of our framework is software architectural analysis. We
use the Software Architecture Analysis Method (SAAM), as it is a widely-studied
scenario-based method, and has been applied to numerous industrial problems.

Users of SAAM first identify the quality attributes of most importance to
their application domain. They then elicit scenarios identifying plausible tasks
involving the architecture (e.g., modification scenarios, or security attack sce-
narios.) After that, SAAM analysts determine the degree to which the software
architecture has support for those scenarios. Analysts identify a list of changes
that the scenarios require and provide necessary guidelines for addressing those
changes in the software architecture.

3.3 The Combined Approach

Our combination of automated software architecture extraction and architectural
analysis is incremental and iterative. The output of the architecture recovery tool
is used as the input to the analysis method, and the analysis results are used to
improve the extracted software architecture. Our combined framework is shown
in Fig. 1. In the following, we discuss how SWAG Kit can be combined with
SAAM using an incremental and iterative approach.

We automatically obtain a low-level system representation using SWAG Kit.
The identification of architectural elements and derivation of a conceptual archi-
tecture is done manually. This manual analysis draws from domain knowledge,
design documents, source code and source code comments; together, these form
architecturally significant concepts. The overhead of this manual analysis can be
significantly reduced if a reference architecture is readily available for the domain
of interest [26,13,9].

Architecturally significant concepts, low-level system representation (from the
recovery tool), and the reference architecture (if available) are then analyzed to
obtain the subsystem structure and eventually, an initial version of the extracted
architecture.

We use SAAM to identify shortcomings in the extracted architecture by ex-
amining the impact of scenarios on the architecture. SAAM helps find solutions
to these shortcomings. This information is fed back to the recovery process.
Concretely with SWAG Kit, this means manually modifying the inputs to the
LSEdit tool that is used to view and refine archtictures.

Since the initial version of the software architecture is extracted using a tool,
the architecture extraction team might focus too heavily on the tool output

An Iterative Framework for Software Architecture Recovery 215

Apply recovery tool on
source code and visualize

tool output

Gather

Low-level system
representation

Architecturally
significant concepts

Improve subsystem
structures and visualize

them using tool

Source of information
-document
- experts/domain
 knowledge

Source code

Extracted/refined
conceptual architecture

Execute scenarios on the
architecture

Identify quality attributes,
tasks and scenarios

Identify shortcomings in
architecture and fix them

Can answer
relevant
maintenance
questions?

Tasks and scenarios

Get final
architecture

Yes

No

Fig. 1. The framework for combining architecture recovery tool and SAAM

when deriving a high level system representation. For example, the extraction
team may fail to correctly identify the attributes that are most important to the
application domain, the mechanisms by which these quality attributes are sat-
isfied, and what protocols are used for the components’ interaction. As a result,
the initially extracted architecture might fail to capture important information
required by maintenance programmers. SAAM can help improve this initial ar-
chitecture by identifying scenarios that address relevant quality attributes.

On the other hand, the tool-supported analysis and visualization facilities of
the recovery process can help SAAM analysts. SWAG Kit provides utilities to
view the software architecture at a finer granularity, which SAAM can use to
fine tune the analysis. For example, the LSEdit editor in SWAG Kit provides
facilities for browsing internal elements of components/subsystems and their
interfaces. These can help the evaluation team understand the functionality of
abstract components.

216 B. Roy and T.C.N. Graham

Table 1. Some Relevant Information of ZLib, ZDelta and GZip

Application
Name

Version Number
of lines

Number
of files

Nature and
language

Conceptual SA
exists?

ZLib [32] 1.2.3 8.5KLOC 22 Library (C) No

ZDelta [31] 2.0 7.0KLOC 27 Library(C) No

GZip [15] 1.2.4 7.3KLOC 16 Application(C) No

In this way, the architecture recovery process and evaluation method can be
combined to enhance the correctness and suitability of an extracted software
architecture.

4 Case Study and Lessons Learned

Our study had two aims. First, we wanted to investigate the practicality of us-
ing automatically recovered architectures as the basis for analysis of legacy sys-
tems for which no architectural documentation is available. Second, we wanted
to examine whether architectural analysis plays a helpful role in the architec-
ture recovery process. In particular, we wanted to see whether the use of an
architectural analysis method (such as SAAM) can improve the quality of the
architecture recovered by a tool (such as SWAG Kit).

In order to study these issues, we used our framework to recover the archi-
tectures of three open source compression/decompression systems: ZLib, Zdleta
and GZip. ZLib is a general purpose lossless data-compression library. ZDelta
is based on ZLib, but has been significantly modified; it provides new interfaces
for streaming the target data and extensive runtime parameterizations. GZip
is a compression utility that uses the same compression algorithm as ZLib and
ZDelta. Information on these systems is listed in table 1.

With the case study we learned several interesting lessons as listed and ex-
plained below.

1. SWAG Kit is weak at identifying subsystem structure. On the other hand,
architecture analysis is effective in identifying subsystem structure once the
recovery process identifies low-level components and connectors.

2. The iterative application of SWAG Kit and SAAM helps to identify and
resolve errors in the architecture, and leads to a deeper understanding of the
architecture than that obtained with SWAG Kit alone.

3. SWAG Kit emphasizes architectural structure (components + connectors,
and eventually subsystems). To get a dynamic view of a system (protocols
used by components to collaborate; how specific tasks are carried out; data
and control flow), the architecture analysis step is helpful.

4. Our approach can help evaluate which of a set of candidate libraries best
suit a project’s needs.

5. When applied to moderate applications (∼10KLOC), onlymodest time invest-
ment (about one person week) was required to perform a complete analysis.

An Iterative Framework for Software Architecture Recovery 217

6. The iteration between architectural extraction and architecture analysis re-
quires close collaboration between the people performing the tasks.

4.1 Improved Subsystem Structure

In order to aggregate low-level source code information into a higher level of
abstraction, we were required to derive the subsystem structure. SWAG Kit is
unable to provide subsystem structures automatically. Therefore, as a part of the
recovery process, we manually analyzed the source code, the comments of the
source code, and used domain knowledge to obtain an initial subsystem structure.
However, we were unsure how well this substructure decomposition matched the
system’s true conceptual architecture. To verify the subsystem structures and to
understand their dynamics, we evaluated them using SAAM.

First, we used SWAG Kit to derive a low-level architecture. Then, we derived
the subsystem structures for each of the three applications; these are shown
in Figs. 2(a), 2(b) and 2(c). A brief description of each subsystem or module
follows:

– The Input Module is used to specify the compression/decompression algo-
rithm and to specify compression levels. Runtime parametrization of the li-
brary is required to dynamically select between multiple compression/decom-
pression algorithms and different files sizes. Separation of the Input Module
from the Main Module localizes the changes that are necessary to adapt to
a new compression algorithm.

– The Main Module coordinates the rest of the components. It consists of
functions required to invoke and terminate the application, manage the ses-
sion, specify the input file (to be compressed/ decompressed), output the
result, and deal with errors.

– The Compression Module carries out the actual compression. The sepa-
ration of the Input Module ensures that this module does not depend on any
hard-coded compression or input algorithms.

– The Decompression Module provides the function of decompressing data
streams.

– The Utilities Module provides useful functions to the rest of the applica-
tion, such as memory management and graphical display.

However, this recovery process did not provide conceptual architecture ad-
equate for answering maintenance questions. Therefore, we proceeded through
the remaining steps of SAAM. At this stage, we first identified three quality at-
tributes: modifiability, integrability and security. Scenarios illustrate the impor-
tance of these important quality attributes in the compression/decompression
domain.

– Modifiability of compression libraries is important. Two examples of changes
that might be required are: 1) add a new compression algorithm to the toolkit
and 2) modify the toolkit to run under a different operating system.

218 B. Roy and T.C.N. Graham

Main Module

Compression Decompression

Utilities Library

Module dependency

Method call

(a) ZLib

Main Module

Compression Decompresion

Utilities Library

 Input
Module dependency

Method call

(b) ZDelta

Main Module

Compression Decompression

Utilities Library

Module dependency

Method call

(c) GZip

Fig. 2. Initial subsystem structures of ZLib, ZDelta and GZip

– Library applications such as ZLib and ZDelta should be easy to integrate with
other applications. Two plausible scenarios are 1) add compression function-
ality to a file transfer program and 2) provide a graphical user interface for
a standalone file compression program.

– Maintaining confidentiality in electronic documents is vitally important. Ex-
ample scenarios might be 1) encrypt a document before saving it on a USB
key and 2) encrypt a document before emailing it.

While analyzing the architectures with respect to the scenarios, we found that
the subsystem structures obtained from SWAG Kit were insufficient to analyze
how easily the scenarios could be enacted.

An Iterative Framework for Software Architecture Recovery 219

We successfully used SAAM to improve the subsystem structures. For ex-
ample, we considered the following integrability scenario: Rather than using the
standard Bluetooth Device Discovery model to detect nearby mobile services, de-
velopers wish to implement a system that relies on machine-readable visual tags
for out of band device and service selection. While implementing the visual tag
application, the developers want to use an easily adaptable built-in compression
library to store the image of the visual tag in order to save memory space. The
automatically extracted subsystem structures for ZLib and ZDelta lacked the
information necessary to analyze how well their architectures could support this
task. We were unable to find a component/subsystem specification that illus-
trated how to use the library application. Both architectures provide separate
Main and Utility modules. This indicates that if a developer wants to adapt the
entire compression/decompression library to another environment, changes can
be localized to the Main Module only.

However, the separation between these two modules is far from sufficient to
determine how easily this scenario could be enacted. We therefore further ana-
lyzed the architecture using the LSEdit visualization facilities. We browsed the
tool output and searched for files and interfaces that might be related to this
task. We found that both ZDelta and ZLib have files illustrating the use of the
library applications. So we modified the subsystem structures of ZLib and ZDelta
and displayed the improved structural views using LSEdit. These versions of the
architectures are shown in Figs. 3(a) and 3(b).

In our experience, the automatically extracted architectures did not support
analysis of the system with respect to our scenario. SAAM analysis can help
identify and fix the shortcomings of the automatically extracted architecture,
and can help improve the subsystem decomposition. However, the use of the
recovery tool can significantly help in carrying out the SAAM analysis.

4.2 Better Understanding of the Architecture

In the remaining SAAM evaluation process, we again used the updated archi-
tectural views to execute the remaining scenarios. To analyze the architecture
for the security quality attribute, we used the scenario: “a developer wishes to
incorporate encryption in the compression feature”. To map the scenario onto
the architectures, we looked for the components in the architectures that sup-
port encryption/decryption. As we had not considered security issues during the
recovery process, none of the extracted architectures contained the information
that was required to address the security scenario.

To explore the scenario, we investigated the libraries’ source code and com-
ments and browsed the tool output to find interfaces that handle data streaming
and security issues. Interestingly, we found that ZDelta handles data streaming
in the target file and has a provision for incorporating data encryption in a
modularized manner.

Therefore, we again refined the architectural view of ZDelta and introduced a
new Security Module subsystem in ZDelta’s architecture (see Fig. 3(b)) in order
to explicitly address the security quality attribute.

220 B. Roy and T.C.N. Graham

Main Module

Compression Decompression

Utilities Library

Module dependency

Method call
Example

(a) ZLib

Main Module

Compression Decompresion

Utilities Library

 Input Example

Security

Module dependency

Method call

(b) ZDelta

Fig. 3. Refined subsystem structures of ZLib and ZDelta

The investigation of the security scenario helped us learn more about what
kinds of quality attributes a compression application can support and what kind
of mechanisms it provides to address these quality attributes. Additionally, the
repeated iterations of the LSEdit browser with further SAAM analysis guided
our understanding in the compression area.

In summary, SAAM analysis using scenarios helped refine the conceptual ar-
chitecture, while the SWAG LSEdit tool helped carry out this analysis on an
imperfect view of the architecture. Incremental and iterative analysis helped
move to a superior system decomposition.

4.3 Understanding the Dynamics of the Architecture

Architecture recovery using SWAG Kit helped us extract the applications’ static
architectures in terms of components and connectors. However, these static ar-
chitectures did not help us understand the architectural dynamics, and did not
support analysis of the strengths and weaknesses of the three software architec-
tures. SAAM evaluation helped us in this regard by guiding us in understanding
how components collaborate to perform a task. The browsing facility of SWAG
Kit helped us find the appropriate component interfaces, which were used to
accomplish the tasks quickly and easily.

An Iterative Framework for Software Architecture Recovery 221

As discussed in section 4.1, we determined two tasks to assess the modifia-
bility quality attribute in this compression/decompression domain: add a new
compression algorithm to the toolkit and modify the toolkit to run under a dif-
ferent operating system. A plausible scenario for the first task is: A developer
wants to add a new lossy compression algorithm for use with media files.

When we analyzed how well the architectures support this scenario, we found
that both ZLib and GZip use the Deflating algorithm along with Huffman
coding, both directly encoded in the Compression Module. So, if the developers
were to add a new compression algorithm, they would have to modify both the
Main and Compression modules.

ZDelta provides better support for this task, as the Input Module is separated.
The developers would only have to substitute the old algorithm with the new
one, without making further modifications. The change is localized and does not
affect other components.

For the second task, we found that as ZLib, ZDelta and GZip all have separate
Utility Modules. They can be easily adapted to a new operating system, since
the changes are localized to this one module only.

Scenario mapping helped us understand the interaction among components
for executing the two tasks. By means of the interactions, we came to know
that ZDelta has a more cohesive modular structure than that of ZLib and GZip.
Thus, the combined approach helped us in understanding the dynamics of the
extracted architectures.

4.4 Provision for Comparing Architectures

When architectural analysis is used during architecture recovery, developers
can use the evaluation results to compare different candidate architectures.
In our case, as all the applications/libraries are in the domain of compres-
sion/decompression, we used the result of the SAAM evaluation to compare
them with respect to the identified quality attributes.

Based on the evaluation results of SAAM, we determined that they match up
to different levels of conformance to the quality attributes, such as modifiability,
integrability and security. The comparison results are summarized in Table 2.

Out of the three applications, ZDelta is the best in terms of modifiability,
since the compression algorithm can be explicitly specified and the application
can easily be adapted to a new operating system. The architectures of ZLib and
GZip do not satisfy the modifiability requirement properly, since they do not
have an explicitly defined Input Module. Both ZLib and GZip provide support
for deploying the application on different platforms.

ZLib and ZDelta provide ease of adaptation, addressing the integrability qual-
ity attribute.

ZDelta provides better support for Security by separating the Decompression
and Security modules. Both ZLib and GZip fail to handle data encryption in a
modularized manner.

These examples show that combining architectural analysis with architectural
extraction can help analyze which set of possible systems best meet a project’s

222 B. Roy and T.C.N. Graham

Table 2. Comparison between Three Compression/ Decompression Applications

Application/
Quality Attribute

Modifiability Integrability Security

Different
Techniques

Different
Platforms

Ease of Adaptation

ZLib X
√ √

X

ZDelta
√ √ √ √

GZip X
√

X X√
=Supports the task or QA; X=Does not support the task or QA

needs. This ability is interesting, for example, for open source projects evaluating
choices of what third party code to reuse.

4.5 Reasonable Tractability

Using our iterative approach, it took us about seven days to extract a conceptual
architecture for each of the three applications (or a total of three staff weeks.)
The applications were of modest size, each consisting of about 10KLOC.

This time benefited from SWAG Kit’s detailed initial architecture and power-
ful browsing facilities. Extraction time also varies depending on the availability
of the proper source code documentation, the quality of comments in the source
code, and the structure of the source code. Further study is required to see
how this time scales to large architectures. However, at least for a system of
about 10KLOC, seven days seems a modest effort for the considerable payback
in architectural knowledge.

4.6 Team Interactions

Our iterative approach requires considerable interaction between the architecture
extractors and evaluators. In our case, the extractors and the evaluators were in
the same group. While extracting the architectures using SWAG Kit and SAAM
iteratively, we found that the close interaction between extractors and evaluators
saved collaboration time and effort. We believe that this might be beneficial for
larger systems.

4.7 Feedback

We contacted the authors of the three libraries to ask them how well the re-
sulting architectures represented their system. Two of the three responded. The
first respondent reported that the conceptual architecture seemed correct. The
second reported that the architecture was incorrect, as it grouped the underlying
source files differently from his understanding of the system. The latter result is
interesting, as it shows that factoring the architecture around quality-driven sce-
narios can lead to different decompositions than intended by the original author.
It is not clear whether the new decompositions are superior to the author’s intu-
ition of what belongs together for analysis and maintenance tasks. Considerable
further research is required to address this question.

An Iterative Framework for Software Architecture Recovery 223

5 Conclusion

In this paper, we have detailed our experience applying a framework for ex-
tracting and evaluating architectures of legacy systems. Our case study applied
SWAG Kit for architectural extraction and SAAM for architecture analysis.
To our knowledge, no one has reported such a case study combining these ap-
proaches in an iterative and incremental manner.

In our case study, we extracted the architectures of three open source compres-
sion applications. We found that the combined approach was tractable (at least
for modestly-sized applications). The use of SAAM can significantly improve the
subsystem structures obtained using SWAG Kit. The combined approach helped
us understand the dynamics of a software architecture in a better way than the
architecture recovery process alone.

The primary limitation of our approach is that our data is largely subjective. A
next step would be to perform a study in the combined approach with third party
developers. Nonetheless, this study allowed us to demonstrate clear benefits and
weaknesses of the incremental and iterative framework.

Acknowledgement

This work was supported in part by the Natural Science and Engineering Re-
search Council of Canada. We thank Rob Fletcher for his help in an earlier
version of this paper.

References

1. Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., Zaremski, A.:
Recommended Best Industrial Practice for Software Architecture Evaluation
(CMU/SEI-96-TR-025) (1996)

2. Babar, M.A., Zhu, L., Jefery, R.: A Framework for Classifying and Comparing
Software Architecture Evaluation Methods. In: Australian Software engineering,
pp. 309–318. IEEE CS, Washington (2004)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series
in Software Engineering. Addison-Wesley, Reading (1998)

4. Bergner, K., Rausch, A., Sihling, M., Ternité, T.: DoSAM - Domain-Specific Soft-
ware Architecture Comparison Model. In: Reussner, R., Mayer, J., Stafford, J.A.,
Overhage, S., Becker, S., Schroeder, P.J. (eds.) QoSA 2005 and SOQUA 2005.
LNCS, vol. 3712, pp. 4–20. Springer, Heidelberg (2005)

5. Bosch, J., Molin, P.: Software architecture design: Evaluation and transformation.
In: Engineering of Computer Based Systems Symposium, pp. 4–10. IEEE CS, Los
Alamitos (1999)

6. Ivan, T.B., Holt, R.C.: Software Architecture Recovery Using Conway’s Law. In:
Centre for Advanced Studies Conference, pp. 123–133. IBM Press, Toronto (1998)

7. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley Professional, Reading (2002)

8. Dobrica, L., Niemela, E.: A Survey on Software Architecture Analysis Methods.
IEEE Transactions on Software Engineering 28, 638–653 (2002)

224 B. Roy and T.C.N. Graham

9. Eixelsberger, W.: Recovery of a Reference Architecture: A case study. In: 3rd In-
ternational Software Architecture Workshop, pp. 105–108. ACM, New York (1998)

10. Graaf, B., Dijk, H.v.: Evaluating an Embedded Software Reference Architecture.
In: 9th European Conference on Software Maintenance and Reengineering, pp.
354–363. IEEE CS, Washington (2005)

11. Garlan, D.: Software Architecture: A Roadmap. In: The Future of Software Engi-
neering, pp. 93–101. ACM, New York (2000)

12. Globus, http://www.globus.org/
13. Gronbaek, K., Wiil, U.K.: Towards a Reference Architecture for Open Hypermedia,

http://www.aue.aau.dk/∼kock/OHS-HT97/Papers/gronbak.html
14. Guo, G.Y., Atlee, J.M., Kazman, R.: A Software Architecture Reconstruction

Method. In: Working IFIP Conference on Software Architecture, pp. 15–34. Kluwer
B.V., Deventer (1998)

15. GZip, http://www.gzip.org/
16. Kazman, R., Abowd, G., Webb, M.: SAAM: A Method for Analyzing the Prop-

erties of Software Architectures. In: 16th International Conference on Software
Engineering, pp. 81–90. IEEE CS, Los Alamitos (1994)

17. Kazman, R., Carriére, S.J.: Playing Detective: Reconstructing Software Architec-
ture from Available Evidence. Automated Software Engineering 6, 107–138 (1999)

18. OODT, http://oodt.jpl.nasa.gov/oodt-site/
19. Lutz, R., Gannod, G.C.: Analysis of a software product line architecture: an expe-

rience report. The Journal of Systems and Software 66, 253–267 (2003)
20. Matinlassi, M.: Evaluating the Portability and Maintainability of Software Product

Family Architecture: Terminal Software Case Study. In: 4th Working IEEE/IFIP
Conference on Software Architecture, pp. 295–298. IEEE CS, Wasington (2004)

21. Medvidovic, N., Jakobac, V.: Using Software Evolution to Focus Architectural
Recovery. Automated Software Engineering 13, 225–256 (2006)

22. Mendonca, N.C., Kramer, J.: An Approach for Recovering Distributed System
Architectures. Automated Software Engineering Journal 8, 311–354 (2001)

23. Monroe, R.T., Kompanek, A., Melton, R., Garlan, D.: Architectural Styles, Design
Patterns, and Objects. IEEE Software 15, 43–52 (1997)

24. Murphy, G.C., Notkin, D., Griswold, W.G., Lan, E.S.: An empirical study of static
call graph extractors. In: 18th International Conference on Software Engineering,
pp. 158–191. ACM, New York (1996)

25. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. In: Soft-
ware Engineering Notes. ACM Sigsoft, vol. 17, pp. 40–52. ACM, New York (1992)

26. Pinzger, M., Gall, H., Girard, J.F., Knodel, J., Riva, C., Pasman, W., Broerse, C.,
Wijnstra, J.G.: Architecture Recovery for Product Families. In: van der Linden,
F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 332–351. Springer, Heidelberg (2004)

27. Rigi, http://www.rigi.csc.uvic.ca/
28. Roy, B., Graham, T.C.N.: Methods for Evaluating Software Architecture: A

Survey, p. 82, School of Computing TR 2008-545, Queen’s University (2008),
http://www.cs.queensu.ca/TechReports/reports2008.html

29. Shrimp, http://www.thechiselgroup.org/shrimp
30. SWAG Kit: Software Architecture Group,

http://www.swag.uwaterloo.ca/SWAGKit/
31. ZDelta, http://cis.poly.edu/ZDelta/
32. ZLib, http://www.zlib.net/

http://www.globus.org/
http://www.aue.aau.dk/~kock/OHS-HT97/Papers/gronbak.html
http://www.gzip.org/
http://oodt.jpl.nasa.gov/oodt-site/
http://www.rigi.csc.uvic.ca/
http://www.cs.queensu.ca/TechReports/reports2008.html
http://www.thechiselgroup.org/shrimp
http://www.swag.uwaterloo.ca/SWAGKit/
http://cis.poly.edu/ZDelta/
http://www.zlib.net/

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 225–240, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards a Method for the Evaluation of Reference
Architectures: Experiences from a Case

Samuil Angelov, Jos J.M. Trienekens, and Paul Grefen

Department of Technology Management,
Eindhoven University of Technology, The Netherlands

{s.angelov,j.j.m.trienekens,p.w.p.j.grefen}@tue.nl

Abstract. Reference architectures provide major guidelines for the structure of
a class of information systems. Because of their fundamental role, reference ar-
chitectures have to be of high quality. Before accepting a reference architecture,
it has to go through a rigorous evaluation process. A number of methods exist
for the evaluation of software architectures. In this paper, we analyze the main
differences between concrete software architectures and reference architectures.
We discuss the effects of these differences on the evaluation of reference archi-
tectures and show that existing methods cannot be directly applied for the
evaluation of reference architectures. For the evaluation of a reference architec-
ture for e-contracting systems, we used the Architecture Tradeoff Analysis
Method with a number of adaptations and extensions. We present our approach
and share our experiences from this evaluation process. Based on the analysis
and our experiences gained, we present our vision for a method for the evalua-
tion of reference architectures.

Keywords: software architecture, reference architecture, evaluation method.

1 Introduction

Every system has an architecture [20]. The software architecture of a program or
computing system is “the structure or structures of the system, which comprise soft-
ware elements, the externally visible properties of those elements, and the relation-
ships among them” [6]. An architecture can be documented in an “architectural
description”. While an architectural description may be used after a system has been
developed (e.g., for system maintenance purposes), its value is greater when it is
defined and used prior to system development. It facilitates discussions on the system
to be developed among its stakeholders [8]. By agreeing a priory on a software archi-
tecture, stakeholders can be certain that they have agreed on the functionalities and
design choices that they would expect to be implemented in the system. In this paper,
we use the term concrete architecture to refer to the architectural description of a
concrete software system.

Architectural design choices have direct repercussions on the system to be de-
signed. That is why it is important to evaluate the architecture of a system before
system development starts. Architecture evaluation allows timely and cheap discovery

226 S. Angelov, J.J.M. Trienekens, and P. Grefen

and resolution of potential problems in the system to be developed. “Architecture
evaluation is a cheap way to avoid disaster” [8]. An architecture that passes success-
fully through an evaluation process sets the fundaments for the development of a
high-quality system. In recent years, a number of methods for the evaluation of soft-
ware architectures have been proposed [5], [10], [16].

Reference architectures have emerged as a special type of architectures that pro-
vides major guidelines for the specification of concrete architectures of one class of
systems. Depending on the context in which they are defined, we differentiate be-
tween two types of reference architectures: practice-driven and research-driven refer-
ence architectures. Practice-driven reference architectures are defined when sufficient
knowledge has been accumulated in a domain to propose the “best of best-practices”
architecture [19]. They are designed to provide a standardized view on a class of sys-
tems. Research-driven reference architectures provide a “futuristic” view on a class of
systems that are expected to become important in the future, but by the time of the
architecture definition are seen as hard to build (e.g., due to functional complexity).
These architectures aim at facilitating the design of the first systems from a class of
systems.

Nowadays, software is evolving rapidly regarding its size and complexity. Soft-
ware components are often developed by different software providers and integrated
at a later stage in a system. Systems have to communicate with other systems. The
system complexity, and the need for integrability of system elements and for system
interoperability have lead to a growing number of practice- and research-driven ref-
erence architectures (e.g., [4], [12], [13], [14], [15], [22], [23]).

Reference architectures influence the design of a set of concrete architectures and,
thus, the design of a set of systems. That is why designers of a reference architecture
have to present evidence for its qualities by evaluating it. However, existing methods
for the evaluation of concrete architectures cannot be applied directly for the evalua-
tion of reference architectures. The main reason for this is the generic nature of refer-
ence architectures. This characteristic of reference architectures leads to a number of
differences between reference and concrete architectures. Existing methods for the
evaluation of concrete architectures are not designed to deal with these specific char-
acteristics of reference architectures. To the best of our knowledge, no method dedi-
cated to the evaluation of reference architectures currently exists.

In this paper, we present our experiences with the evaluation of a reference archi-
tecture. We start with an analysis of the specific characteristics of reference architec-
tures and their evaluation. This analysis allows us to motivate the need for attention to
the evaluation of reference architectures and to provide the foundations for a dedi-
cated method for the evaluation of reference architectures. Next, we present the case
of the evaluation of a reference architecture for e-contracting systems and discuss our
approach in this case. Based on our experiences in this case and the analysis of refer-
ence architectures, we present our vision for a method for the evaluation of reference
architectures. We believe that the results presented in this paper will provide valuable
pointers for the evaluation of reference architectures and will contribute to the design
of a method for the evaluation of reference architectures.

The paper is organized as follows. In Section 2, we discuss concrete and reference
architectures. We compare them and identify differences between them. In Section 3,
we discuss the evaluation of concrete and reference architectures. We show that due

 Towards a Method for the Evaluation of Reference Architectures 227

to the differences between them, existing methods for the evaluation of concrete ar-
chitectures cannot be applied directly for the evaluation of reference architectures. In
Section 4, we present our experiences with the evaluation of a specific reference ar-
chitecture. Based on this, we present our vision for a method for the evaluation of
reference architectures. The paper ends with conclusions.

2 Concrete and Reference Architectures

In this section, we present concrete and reference software architectures and discuss
the goals and outcomes of their design. We compare them and identify a number of
differences between them.

2.1 Concrete Architectures

In the 1990’s, complex and large software systems were becoming widely spread [8].
This has lead to an increased interest in the design and documentation of software
architectures as a means to facilitate system development and maintenance.

An architecture description (or briefly “an architecture”) defines a set of function-
alities and addresses certain system, business, and architectural qualities that are
required by the stakeholders [6]. System qualities (e.g. availability, modifiability) are
qualities that stakeholders require in the system to be developed. Business qualities
(e.g. cost, time-to-market) are business goals that affect the system architecture. Ar-
chitectural qualities (e.g. conceptual integrity, buildability) are qualities of the archi-
tecture itself.

The design of high-quality concrete software architectures has been given signifi-
cant attention in the literature [6], [20], [21].

2.2 Reference Architectures

According to [6] a reference model is “a division of functionality together with data
flow between the pieces”, and a reference architecture is “a reference model mapped
onto software elements (that cooperatively implement the functionality defined in the
reference model) and the data flows between them”. A reference architecture is based
on the functionalities and data flows defined in a reference model and applies archi-
tectural styles and patterns that help in addressing the main qualities expected from
the architecture (see Fig.1). A “good” reference architecture can bring a number of
benefits [19]. It may facilitate the design of high-quality concrete architectures; it may
facilitate communications between domain professionals, etc.

A reference architecture can be defined before the existence of practical experi-
ences with the design of concrete architectures. The design of such a reference archi-
tecture is inspired by existing research efforts. Thus, these reference architectures are
research-driven. These architectures follow the “top-down” approach presented in
Fig.1, i.e., a reference architecture is based mainly on a reference model and on exist-
ing architectural patterns. We call these reference architectures Futuristic Reference
Architectures (FRAs), as their goal is to make an attempt to “look into the future” and
to foresee the major design principles that will be of importance in the design of con-
crete architectures for a specific domain. Examples of a FRA are [4], [18], [22].

228 S. Angelov, J.J.M. Trienekens, and P. Grefen

Fig. 1. The relationship between reference models, reference architectures and concrete archi-
tectures (adapted from [6])

Often, reference models and reference architectures are defined based on accumu-
lated practical experience in domains, i.e., they are practice-driven. In this paper, we
call practice-driven reference architectures Practice Reference Architectures (PRAs).
As the design of PRAs is inspired from practice, the design process can be seen more
as following a “bottom-up” approach in which concrete architectures play the major
role for the design of a reference architecture (see Fig.2). Another consequence from
the “practice” roots of PRAs is that they might address legacy issues in their design.
PRAs are usually (but not necessarily) elaborated by recognized standardization bod-
ies that facilitate developments within a domain, or by consortiums established by
powerful companies within the domain which aim at establishing or even enforcing
standards within the domain. Examples of a PRA are [13], [14], [23].

Fig. 2. The influence of concrete architectures in the case of PRAs

PRAs and FRAs have certain differences with respect to their origin and goals. In
the case of PRAs, the functionalities that may be part of a system are known. PRAs
are based on existing “best practices” often interwoven with existing legacy issues.
Thus, we can view the origin of PRAs as descriptive. In the case of FRAs, only lim-
ited existing practices can be used (i.e., architectural patterns, architectures of proto-
types). As there are not complete solutions that exist in practice, we can view the
origin of FRAs as prescriptive.

Table 1. Origin and goals of PRAs and FRAs (P - prescriptive, D – descriptive)

 Origin Goals
PRA D P
FRA P D

 Towards a Method for the Evaluation of Reference Architectures 229

Generally, any architecture of a system-under-development has prescriptive goals
with its design. However, an in-depth look into PRAs and FRAs reveals an interesting
nuance. PRAs are designed to facilitate faster system design and development and to
address standardization problems in a domain. Thus, their main goal is to serve as
prescriptive tools. FRAs are designed to facilitate the design of architectures of first
systems in a domain. FRAs provide detailed descriptions of their “novel” functional-
ities. These details are required to clarify the innovative elements in the architecture
as well as to convince the domain users for the qualities of systems based on the FRA
(e.g., their “buildability”). Due to their avant-guard features, FRAs will often never
assert themselves as accepted reference architectures. Thus, FRAs are designed to
serve as descriptive tools and have more limited goals as prescriptive tools. We repre-
sent the nuances in the origin and goals of PRA and FRA in Table 1.

2.3 Comparison of Concrete and Reference Architectures

There are a number of differences between reference architectures (PRAs and FRAs)
and concrete architectures. Next, we present these differences. The results from this
section provide the foundations for our discussion in Section 3.

Difference 1: Reference architectures are of a generic nature. A reference architecture
is designed to address the functionalities and qualities desired by all stakeholders in
their specific contexts (see Fig.3).

C
on

te
xt

 1

C
on

te
xt

 N

Fig. 3. The role of stakeholders and contexts for reference and concrete architectures

Difference 1 is a fundamental difference and is the basis of a number of specific dif-
ferences:

Difference 2: There is not a clear group of stakeholders of a reference architecture.
As stakeholders can be seen all companies from the domain, all companies develop-
ing software for the domain, etc. However, it is not possible to involve all these

230 S. Angelov, J.J.M. Trienekens, and P. Grefen

stakeholders in the definition of a reference architecture (due to logistic, political, etc.
reasons).

Difference 3: Due to their generic nature, reference architectures are defined on a
high level of abstraction. They may provide details only for specific elements. For
example, as discussed in Section 2.2., in the case of FRAs, novel elements with com-
plex structure may be paid a closer look. In the case of PRAs, elements critical for the
standardization goals of the architecture may be defined in greater detail.

Difference 4: A reference architecture has to address more architectural qualities
than a concrete architecture. These additional architectural qualities are due to the
generic nature of reference architectures and their wider audience. For example, an
“applicability” quality would be of importance for a reference architecture to indicate
the level of applicability of the architecture to different contexts in the domain. This
quality is superfluous for a concrete architecture as a concrete architecture is designed
to be applicable for a specific context.

Because of these differences between concrete and reference architectures, refer-
ence architectures are considered by some authors as very distant from concrete archi-
tectures: "reference architectures are not architectures; they are useful concepts that
capture elements of an architecture" [6].

3 Evaluation of Architectures

In this section, first, we discuss the goals and outcomes of the evaluation of concrete
architectures and methods that can be used for their evaluation. Next, we discuss the
goals and outcomes of the evaluation of reference architectures. We show that due to
the differences between concrete and reference architectures, existing methods for the
evaluation of concrete architectures cannot be directly applied for the evaluation of
reference architectures.

3.1 Evaluation of Concrete Architectures

System development is an expensive process in terms of costs and time. Evaluation of
the architecture of a system prior to its development allows “measuring” the expected
level of achievement of the system functionalities and system, business, and architec-
tural qualities required by the stakeholders. Timely discovery of failure to achieve
desired functionalities and qualities means saved time and resources in the develop-
ment process and avoids frustrations among stakeholders.

A number of methods exist for evaluation of software architectures. These methods
differ in their evaluation techniques as well as in their goals. Most methods (e.g.,
SAAM, ALMA) rely on questioning techniques (asking the stakeholders qualitative
questions) and use scenarios as their main tool [10]. Few methods (e.g., SAEM) rely
on measuring techniques that support quantitative measurement and evaluation of
architectures. Particular methods are designed to evaluate only specific architectural
qualities. For example, SAAM and ALMA are suitable for the evaluation of the modi-
fiability quality [16]. Other methods support the evaluation of multiple qualities (e.g.,
ATAM and SBAR). According to [10], some methods can be integrated easier in the
design process than other methods (e.g., SBAR, ATAM). In [10], the authors

 Towards a Method for the Evaluation of Reference Architectures 231

conclude that ATAM (Architecture Trade-off Analysis Method) has as advantages its
integration of questioning and measuring techniques, the wide set of qualities that can
be evaluated through it, and the possibility of integrating the method easily in the
design process. An overview and comparison of existing methods can be found in [5],
[10], [16].

It must be noted that existing evaluation methods provide techniques mainly for the
evaluation of system qualities. The definition and evaluation of business and architec-
tural qualities has received little attention in the literature. CBAM [6] can be distin-
guished as a method for the evaluation of costs, benefits, and risk business qualities.
ATAM [8] addresses explicitly the evaluation of the “conceptual integrity” architec-
tural quality. Though it is not explicitly stated in the method, the generation of scenar-
ios in ATAM can be used for the evaluation of the “completeness” architectural
quality as well.

3.2 Evaluation of Reference Architectures

In order to establish an effective reference architecture with respect to many concrete
architectures, a reference architecture should have a high degree of excellence. To
identify the aspects that may require additional attention before its release and to
prove its final value, a reference architecture requires evaluation. In Section 2.2, we
discussed that a reference architecture contains a description of functionalities and
addresses certain system, business and architectural qualities. Thus, concrete and
reference architectures have to be evaluated for the same aspects. However, as dis-
cussed in Section 2.3, concrete and reference architectures have certain differences.
These differences lead to a number of problems that do not allow the direct applica-
tion of methods for the evaluation of concrete architectures in the case of reference
architectures. Next, we explain our motivation for this statement.

Problem 1: One of the problems for applying an existing method for the evaluation
of reference architectures is caused by the lack of a clearly defined group of stake-
holders (see Difference 2). ATAM and most other methods heavily rely on the par-
ticipation of all stakeholders in its evaluation. However, reaching all stakeholders of
reference architectures and convincing them to participate in an evaluation is prob-
lematic. In both cases (PRAs and FRAs), the big number of stakeholders makes it
impossible to address all of them. Furthermore, in the case of PRAs, often, stake-
holders will not unite around a common reference architecture due to political and
contextual differences (rivalry, different legacies, etc.). In the case of FRAs, most
stakeholders will have limited incentives (as there are no direct benefits for them) and
capabilities (due to lack of visionary thinking and knowledge) to contribute to the
architecture evaluation.

Problem 2: As discussed in Section 3.1 most evaluation methods make use of scenar-
ios. However, the generic nature of reference architectures (see Difference 1) and
their high level of abstraction (see Difference 3) make the generation of a usable set
of scenarios difficult. Due to the generic nature of reference architectures, evaluators
have the choice to either define a large set of “concrete” scenarios for the possible
contexts in which the reference architecture can be applied or define highly general
scenarios which cover all these contexts. In the first approach, the huge number of

232 S. Angelov, J.J.M. Trienekens, and P. Grefen

possible contexts results in a huge number of scenarios. This makes defining and
prioritizing them a problematic task. In the second approach, the generality of scenar-
ios makes it hard to evaluate their adequate support in the architecture. This problem
has already been observed even in the evaluation of concrete architectures of informa-
tion systems, whose complexity leads to the definition of highly general scenarios [7].
The abstract nature of (parts of the) reference architectures further aggravates the
problem of generating concrete scenarios. In the case of FRAs, the lack of practical
knowledge for the contexts in which concrete architectures will be defined makes
generation of scenarios a “guessing game”.

Problem 3: In Section 3.1, we mentioned that from the existing methods for the
evaluation of concrete architectures only ATAM addresses explicitly the evaluation of
the “conceptual integrity” architectural quality and implicitly of the “completeness”
architectural quality. However, reference architectures have to address more architec-
tural qualities than concrete architectures (see Difference 4). Consequently, existing
methods fall short in providing techniques for the evaluation of the architecture quali-
ties of PRAs and FRAs.

This brief discussion shows that existing methods on the evaluation of concrete ar-
chitectures are not directly applicable for an evaluation of reference architectures. In
the recent years, software product lines gained the attention of research and industry
[6], [9]. Software product line architectures (also called family architectures) are
abstractions of concrete architectures that allow architecture reuse for a number of
software products that share a common foundation. In [11], software product line
architectures are positioned between reference architectures and concrete architectures
and a dedicated method for their evaluation called FAAM is proposed. The more
generic nature of software product line architectures suggests that FAAM may be
more suitable for the evaluation of reference architectures than methods for the
evaluation of concrete architectures. However, similar to methods for the evaluation
of concrete architectures, FAAM does not deal with the evaluation of architectural
qualities. Furthermore, in FAAM, the stakeholders are expected to be involved ac-
tively in the evaluation process. Thus, FAAM does not resolve the problems identi-
fied in this section and cannot be applied for an evaluation of reference architectures.

4 An Approach to the Evaluation of Reference Architectures

In our previous work, we have faced the problem of evaluating an E-contracting Ref-
erence Architecture (ERA) [4]. This section starts with a brief presentation of the
context of ERA. For the evaluation of ERA, we used the Architecture Tradeoff
Analysis Method (ATAM). As ATAM is designed for the evaluation of concrete
architectures, we had to apply a number of adaptations and extensions on it. We pre-
sent our evaluation approach and share our experiences from it. Based on our experi-
ences and the discussion in Section 3, we present our vision for a method for the
evaluation of reference architectures.

 Towards a Method for the Evaluation of Reference Architectures 233

4.1 The E-contracting Reference Architecture (ERA)

Business-to-business e-contracting uses information technology for improving the
efficiency and effectiveness of contracting processes of companies. A reference archi-
tecture that provides guidelines for the design of concrete architectures of highly
automated e-contracting systems will significantly facilitate the software development
process and will introduce a standardized view on e-contracting systems. So far, the
domain of highly automated e-contracting has been addressed mainly by the research
community. Over many years, industry considered it to be too complex and rigid and
hardly applicable in practice. However, there is currently an increasing interest in the
industry in the development of more advanced contracting systems with a higher level
of automation.

In [1], we presented our initial design of ERA. According to the discussion in Sec-
tion 2.2, ERA can be classified as a FRA. In the next section, we explain the approach
that we took for the evaluation of ERA and the results from it. A detailed description
of the evaluation process and of the final version of ERA can be found respectively in
[3] and [4].

4.2 The Evaluation of ERA

Our initial approach was to evaluate ERA by means of an existing method for the
evaluation of concrete architectures. We chose to use ATAM as a method for the
evaluation of ERA because of its advantages in a number of aspects over other meth-
ods (see Section 3.1), and because of its successful application in many projects [5].
Our team had no previous experiences with ATAM. After introducing ourselves to
ATAM, we foresaw a number of problems (presented in Section 3.3). Realizing the
lack of a dedicated method for the evaluation of reference architectures, we decided to
attempt the evaluation of ERA with ATAM and to make adaptations and extensions
on ATAM where the “reference architecture” context required it. Next, we describe
the phases in the evaluation of ERA (based on ATAM) and the adaptations and exten-
sions that we made on ATAM.

Phase 1: Identification of the stakeholders of ERA that will be involved in its evalua-
tion; preparation of the evaluation process.

Activities: We invited 3 researchers with experience in e-contracting and software
architectures in the role of software architects/designers with whom we performed
Phases 2a and 2b of ATAM. For Phase 3 of ATAM, we involved a group of 25 con-
tract business professionals.

Adaptations of ATAM: ATAM assumes the identification of stakeholders and their
participation in the evaluation process to be a rather straightforward process. As dis-
cussed in Problem 1 (see Section 3.2), this is not the case in reference architectures.
To solve this problem, we identified first the roles for the different stakeholders, i.e.,
contract (procurement) managers, software architects/designers/managers, contract
engineers, legal officers, and CEOs. We estimated that people acting in these roles in
a company might be affected by the development and introduction of an e-contracting
system. Next, we searched for people representative for these roles. As ERA is a
FRA, we were looking for people with visionary thinking who had (or can build)
understanding for the advanced elements in ERA. We managed to approach people

234 S. Angelov, J.J.M. Trienekens, and P. Grefen

with such qualities for Phases 2a and 2b. However, approaching business profession-
als for the evaluation of ERA was difficult. As discussed, a FRA may never be ac-
cepted as a reference architecture. Thus, there was no direct incentive for business
professionals to participate in the evaluation of ERA. To offer an incentive for the
business professionals to spend time on the evaluation of ERA, we organized a five-
hour tutorial on electronic contracting within the scope of the "4th Annual Contract
Management Conference" [2]. The main goal of the tutorial was to present the basic
aspects of e-contracting. A discussion on the architecture of advanced e-contracting
systems was announced as secondary element of the tutorial. The educational goal of
the tutorial appeared to be a sufficient incentive for attracting 25 attendees. The at-
tendees had the following role distribution: 8 contract managers (2 of the contract
managers had also a function as IT experts in their departments); 4 procurement man-
agers, 2 contract engineers, 3 CEOs; 2 legal officers; 2 government representatives; 4
professionals with other business functions.

Phase 2a: Elicitation of the architecture and required qualities; identification of archi-
tectural approaches.

Activities: We evaluated the set of required qualities in ERA. At the end of this
step, we had a list of system and architectural qualities (system qualities: security,
flexibility, modifiability, integrability, high automation, interoperability; architectural
qualities: conceptual integrity, completeness, buildability, applicability, usability,
acceptability). After this phase, the amount of quality attributes required in ERA has
increased compared to our initial list of required qualities. Furthermore, our under-
standing for the required qualities in ERA has improved. Next, we defined scenarios
for the qualities that we identified. Finally, we identified the architectural approaches
that we used in ERA.

Adaptations of ATAM: Initially, the lack of concrete context resulted in the defini-
tion of highly-general and (mostly) equally important scenarios (related to Problem
2). ATAM does not provide any guidelines on the definition and prioritization of
scenarios in such general settings. Our approach to resolve this problem was to select
a number of contexts in which ERA can be applied and define concrete scenarios
relevant for them. We selected three trading domains (i.e., the advertising, the
logistics, and the insurance domains) for the e-contracting aspects of which we had
knowledge from previous research. As contracting practices differ mainly per domain,
selection of different domains was a sufficient concretization in our case. However,
the domains that we selected were by no means representative for the large set of
domains where e-contracting can take place. So, the selection was a pragmatic choice.
Having in mind the generic nature of reference architectures, we looked only for sce-
narios that were applicable for all three selected domains.

Phase 2b: Analysis of the architectural approaches and their effect on the selected
qualities.

Activities: We analyzed the suitability of the architectural approaches used in ERA
for achieving the security, flexibility, automation, modifiability, integrability, and
interoperability qualities. We discussed the risks, non-risks, sensitivity points and
tradeoffs of ERA. These activities led to a number of improvements of ERA. Lack of
a consistent strategy for the exchange of data among components and invocation of
components was discovered. The requirements for modifiability and integrability

 Towards a Method for the Evaluation of Reference Architectures 235

were not addressed consistently throughout the architecture as well. To address these
problems, a number of additional architectural styles and patterns were introduced in
ERA. We discovered also that a new component had to be added to the architecture to
satisfy the interoperability requirement. Thus, the evaluation of desired qualities of
ERA through ATAM led to substantial improvements in the architecture. After im-
proving ERA, we re-evaluated it and elaborated a final list of risks, non-risks, sensi-
tivity points and tradeoffs in ERA. This list contained issues that were all within our
scope of expectations.

Adaptations of ATAM: As discussed in Problem 3, ATAM is designed to address
mainly system qualities and the conceptual integrity architectural quality. That is why,
at this stage, we selected and evaluated only the qualities of ERA that can be evalu-
ated through this step in ATAM, and we skipped the remaining qualities.

Phase 3: Verification of the results from Phase 2 by involving “business” stake-
holders.

Activities: As already mentioned, in this phase, we organized a tutorial on e-
contracting [2]. In this tutorial, first, we presented the main aspects of e-contracting to
the audience (time used: 2 hours). As a next step, we presented ERA (time used: 1
hour). In the remaining time of the tutorial (2 hours), we organized a discussion
session on the qualities which the participants would expect from an e-contracting
system. We asked the participants to generate scenarios which they think would be
relevant for such a system and to rank them. Each participant was given the right to
cast 3 votes in total. The results from the workshop helped us to make final adapta-
tions to ERA. The qualities that the tutorial participants identified overlapped with the
qualities already identified in Phase 2a. We used the scenarios generated in Phases 2a
and 3 to evaluate the functional completeness quality of ERA. For our surprise, the
scenario that was ranked highest by the participants was not addressed properly in
ERA. As a consequence, we introduced a new component in ERA to address the sce-
nario identified by the participants.

Adaptations of ATAM: The results from this phase proved that this phase was a
useful element of the evaluation process. However, in this phase, we faced a number
of problems for the resolution of which we had to make adaptations to ATAM.

ERA is defined for the design of highly-automated contracting systems. The idea
of such advanced systems is currently addressed only in the research world. Though
we spent a significant amount of time in presenting the essential aspects of e-
contracting and the goals of ERA, the participants did not accept this idea and dis-
cussed a system with a low-level of automation. This can be explained by the lack of
visionary thinking by some of the participants and by the conflict of interests between
the goals of the participants and our goals. The participants had to suggest scenarios
for a futuristic system which was beyond the imagination of many of the participants.
Furthermore, the participants were interested in practical solutions that can be imple-
mented straightforwardly. Thus, they were interested in discussing a less advanced
system that could be developed on the basis of existing technology. As a conse-
quence, we had to re-formulate the scenarios defined by the participants for the situa-
tion of a highly automated e-contracting system. Some scenarios made no sense in the
case of highly-automated system and had to be removed from the list. From the 22
scenarios that were generated, finally we considered 16 to be relevant.

236 S. Angelov, J.J.M. Trienekens, and P. Grefen

We gave all participants 3 votes that they could use for the prioritization of the
scenarios. In ATAM participants are given votes equal to around 30% of the number
of scenarios defined (this would mean 4-5 votes in our case). The reason to decrease
the number of votes was the lack of time combined with the inability of some partici-
pants to easily rank the scenarios. Some participants could not prioritize the scenarios
as they did not have a good base for reasoning. In the voting process, we did not take
into consideration the different roles of the participants. As not all people had the
visionary thinking required for this evaluation, any attempt to influence the voting
process based on the different roles might have had a negative rather than a positive
effect on the process (e.g., people with more visionary ideas might get less votes in
case they are representing the same role).

We had to omit a number of steps advocated in ATAM. We did not present to the
participants ATAM in detail and the results from the previous steps of ATAM. We
estimated that presenting explicitly ATAM and our previous results from the evalua-
tion process would consume too much time (which we did not have) and would de-
motivate people to present their own views on e-contracting systems. Due to the lack
of time, we did not perform an in-depth discussion on the ranking of the scenarios.
ATAM advocates analysis of the architectural approaches in this phase. However, we
decided to skip this step in our evaluation as the knowledge of all participants was
insufficient for such analysis. These adaptations are related to Problems 1 and 2.

Additional uses and extensions of ATAM: To evaluate some of the qualities not
evaluated in Phase 2b, we made use of certain steps in ATAM and extended these
steps with techniques for the evaluation of the qualities. For the evaluation of the
remaining qualities, we had to add additional steps and techniques to ATAM.

We used Phase 2a and Phase 3 of ATAM to evaluate the usability and acceptability
architectural qualities of ERA. We considered the time required to introduce ERA to
the stakeholders and the level of their understanding of the architecture as metrics for
the achievement of this quality.

As it was not possible to address all domain stakeholders and obtain their agree-
ment on the scope of ERA (see Problem 1), we concluded that completeness of ERA
has to be evaluated beyond the scenario-based technique provided in ATAM. We
extended ATAM with two additional techniques for the evaluation of the complete-
ness of ERA. First, we used a reference model on e-contracting and reasoned whether
the concepts in it were addressed in ERA. Second, we compared ERA to existing
concrete e-contracting architectures and showed that ERA addresses the functional-
ities defined in these architectures. We could not evaluate the applicability and
buildability qualities in any step in ATAM and had to extend it with additional tech-
niques. To demonstrate the applicability of ERA to different contexts, we applied it
for the analysis of existing concrete e-contracting architectures and for the design of
hypothetical architectures in the sample domains that we selected in Phase 2a. In [6],
the evaluation of the buildability quality is done through ATAM. However, in the
case of ERA, many components support functionalities that are addressed only in
recent research developments from different research domains and that implement
complex, little tested (or even not defined) algorithms. We realized that a component
might be easily buildable in one business context and very complex to build for an-
other context. Certain domains make use of simple trading scenarios, while others

 Towards a Method for the Evaluation of Reference Architectures 237

involve complex interactions among companies for the establishment and enactment
of a contract. A brainstorming session during Phase 2a of ATAM on the buildability
quality of ERA could not be carried out, as none of the participants had detailed and
up-to-date knowledge on the status quo of the research results for the components
supporting complex functionalities. In order to present convincing evidence for the
buildability of ERA, we performed a literature survey on the existing research results.
This step required a substantial amount of time. The results from this step were a list
of existing research and industry results that can be used as a basis for building some
of the components and a list of "buildability risks" that exist due to the impossibility
to estimate the buildability quality of some components for all business contexts.

Discussion on the evaluation process: ERA evolved substantially after its evaluation.
Its structure, conceptual integrity, and functional completeness improved. The adapta-
tions and extensions to ATAM that we used in our case allowed us to better evaluate
our reference architecture for the identified required qualities. In contrast to the origi-
nal ATAM process that has relatively fixed time duration, these additional activities
required substantial time and resulted in a long-running evaluation process (around 3
months).

We concluded that the heterogeneity in knowledge and background of the partici-
pants in Phase 3 led to the inability of some of them to contribute to the evaluation
process. Particular steps in ATAM were beyond the skills of all participants in this
phase. We failed in involving a sufficient number of highly motivated, experienced,
information technology knowledgeable, and visionary practitioners for Phase 3.

ERA has not been applied for the design of e-contracting systems yet. We are cur-
rently disseminating it to parties that may be interested in it. Its application for the
design of concrete e-contracting architectures will give an indication for the quality of
the architecture and thus for the quality of the evaluation process.

4.3 Generalization of the Approach

In this section, we generalize our findings from the evaluation of ERA. Our experi-
ence with the evaluation of ERA showed that though ATAM is not designed explic-
itly for the evaluation of reference architectures, its application may bring substantial
improvements to a reference architecture. However, direct application of ATAM is
not possible. A number of adaptations and extensions on ATAM are required for its
successful application for the evaluation of reference architectures. That is why we
think that a method for the evaluation of reference architectures may use ATAM with
certain adaptations as a foundation and extend ATAM with a number of steps and
techniques. Our discussion in Section 2 shows that due to the differences between
PRAs and FRAs, the adaptations and extensions of ATAM will vary for the evalua-
tion of PRAs and FRAs.

Usage of ATAM: ATAM is applied for the evaluation of system qualities like inter-
operability, modifiability, performance, conceptual integrity, etc. Scenarios are used
for evaluation (partially) of the completeness quality. Furthermore, we suggest using
the discussion meetings in ATAM to evaluate the level of understanding and accep-
tance of the architecture by the stakeholders (i.e., usability and acceptance qualities).

238 S. Angelov, J.J.M. Trienekens, and P. Grefen

Adaptations of ATAM: For an evaluation of reference architectures, ATAM has to
be adapted at two points, i.e., identification of stakeholders and scenario definition
and prioritization. We suggest that evaluators adapt ATAM in the following ways:

• Define roles for the stakeholders from the domain and invite representatives for
these roles that will participate in the evaluation process. In the case of PRAs, rep-
resentatives from leading industry solutions are recommended for the evaluation
sessions. Selection of a “good” set of representatives is the main challenge in this
situation (i.e., stakeholders that are willing to collaborate and have common goals).
In the case of FRAs, leading researchers should play a main role in Phase 2 of
ATAM and experienced and interested in future developments business stake-
holders in Phase 3. The identification and involvement of stakeholders who have
the knowledge and the motivation to contribute to the evaluation of the FRA is a
challenge in this situation.

• Select a number of contexts and define scenarios for these contexts. Prioritize sce-
narios within a concrete context, and merge the prioritized scenarios in a general
set of scenarios.

Extensions of ATAM: ATAM needs complementary activities and techniques for
evaluation of certain architecture qualities. In our experience, we have faced the need
to extend ATAM for the evaluation of three architecture qualities, i.e., completeness
(besides scenario-based evaluation), applicability, and buildability. As for many
PRAs and FRAs these qualities will be of importance, next, we present the activities
and techniques that we propose as extensions of ATAM.

• To thoroughly evaluate completeness, we suggest the usage of existing, “best-
practice”, concrete architectures and comparing their functionalities to the func-
tionalities of the reference architecture. However, in the case of FRAs, there might
be too few (or none at all) relevant concrete architectures. That is why, for FRAs,
we suggest also the usage of a recognized reference model and analysis of the ar-
chitecture for its support. This reference model has to be different from any refer-
ence model used in the design of the reference architecture.

• To evaluate the applicability of FRAs and PRAs, we propose the definition of a
number of concrete architectures for specific contexts based on the reference archi-
tecture and an evaluation of the applicability of the reference architecture in these
contexts. For PRAs (and when possible for FRAs), existing concrete architectures
in specific contexts can be analyzed directly from the perspective of the reference
architecture.

• To evaluate the buildability quality, a number of concrete contexts have to be se-
lected in which the buildability of components is discussed. The contexts should be
selected on the basis of the complexity of the required system functionalities. In the
case of FRAs, evaluators should address not only existing technology but also ex-
isting research results (prototypes and theoretical developments) and provide ex-
amples about how these can be used or adapted to support the functionalities
defined in the reference architecture.

 Towards a Method for the Evaluation of Reference Architectures 239

5 Conclusions

In this paper, we distinguish between two types of reference architectures, i.e., Prac-
tice Reference Architectures (PRAs) and Futuristic Reference Architectures (FRAs).
We compare reference architectures to concrete architectures and show that the spe-
cific characteristics of reference architectures do not allow existing methods for the
evaluation of concrete architectures to be used straightforwardly for the evaluation of
reference architectures. We share our experiences and conclusions from a case on the
evaluation of a FRA. Based on our experiences from this case, we outline a number of
adaptations and extensions that in our opinion must be applied on the existing evalua-
tion method ATAM for the evaluation of reference architectures.

Currently, we are involved in the evaluation of another FRA called e-Sourcing
Reference Architecture (eSRA) [18]. The first results from its evaluation confirmed
our findings regarding the differences between concrete and reference architectures.
We also faced the problems discussed in this paper in using ATAM. We currently use
the case of the evaluation of eSRA to further elaborate our approach for the evalua-
tion of reference architectures.

As future work, we aim at defining a detailed method for the evaluation of refer-
ence architectures. To reach this goal, a number of points in our approach require
further attention. Guidelines for the identification and involvement of stakeholders in
the cases of PRAs and FRAs must be elaborated. We shall base our future work in
this direction on existing literature on stakeholder analysis, e.g., [17]. Definition and
prioritization of scenarios is paramount for the approach but is currently not a pre-
cisely defined process. Guidelines for the selection of contexts are required. Our
experiences showed that different criteria for the selection of contexts can be applied
in the different evaluation steps. This indicates that different guidelines for the selec-
tion of contexts in the different evaluation steps should be defined. Metrics for the
evaluation techniques suggested by us must be defined as well. The specific charac-
teristics of PRAs and FRAs indicate that a method for the evaluation of reference
architectures has to recognize the differences between them and has to address these
differences in separate ways at certain points. Our current conclusions are based on
the evaluation of FRAs. In our future work, we plan to test our findings for the
evaluation of PRAs as well.

References

1. Angelov, S.: Foundations of B2B Electronic Contracting, PhD Thesis. Eindhoven Univer-
sity of Technology, Eindhoven (2006)

2. Angelov, S.: Defining E-Contracting and Measuring its Significance. In: Post-Conference
Workshop at the 4th Annual Contract Management Conference, Dubai. Institute for Inter-
national Research (2007)

3. Angelov, S.: Evaluation of the E-Contracting Reference Architecture. Technical report,
Beta Working Paper, WP 225, Eindhoven University of Technology (2007)

4. Angelov, S., Grefen, P.: An E-contracting Reference Architecture. Journal of Systems and
Software (to appear) (February 26, 2008)

240 S. Angelov, J.J.M. Trienekens, and P. Grefen

5. Babar, M., Gorton, I.: Comparison of Scenario-Based Software Architecture Evaluation
Methods. In: 11th Asia-Pacific Software Engineering Conference (APSEC 2004), pp. 600–
607. IEEE Computer Society, Washington (2004)

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley Professional, Reading (2003)

7. Bengtsson, P., Bosch, J.: Scenario-Based Software Architecture Reengineering. In: Fifth
International Conference on Software Reuse, 1998, Victoria, Canada, pp. 308–317 (1998)

8. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and
Case Studies. Addison-Wesley Professional, Reading (2002)

9. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Professional, Reading (2001)

10. Dobrica, L., Niemelä, E.: A Survey on Software Architecture Analysis Methods. IEEE
Transactions on Software Engineering 28(7), 638–653 (2002)

11. Dolan, T.: Architecture Assessment of Information-System Families - A Practical Perspec-
tive, PhD Thesis. Eindhoven University of Technology, Eindhoven (2001)

12. Ferrara, F.: The Standard Healthcare Information Systems Architecture and the DHE mid-
dleware. International Journal of Medical Informatics 52(1), 39–51 (1998)

13. Grefen, P., Remmerts de Vries, R.: A Reference Architecture for Workflow Management
Systems. Data & Knowledge Engineering 27(1), 31–57 (1998)

14. Hollingsworth, D.: The Workflow Reference Model. Technical report, Workflow Man-
agement Coalition Documents, TC00-1003, Workflow Management Coalition (1995)

15. Bontempo, C., Zagelow, G.: The IBM Data Warehouse Architecture. Communications of
the ACM 41(9), 38–48 (1998)

16. Ionita, M., Hammer, D., Obbink, H.: Scenario-Based Software Architecture Evaluation
Methods: An Overview. In: Workshop on Methods and Techniques for Software Architec-
ture Review and Assessment at the International Conference on Software Engineering, Or-
lando, Florida, USA (2002)

17. Kusters, R., Solingen, R., Trienekens, J.: Identifying Embedded Software Quality: Two
Approaches. Quality and Reliability Engineering International 15(6), 485–492 (1999)

18. Norta, A.: Exploring Dynamic Inter-Organizational Business Process Collaboration, PhD
Thesis. Eindhoven University of Technology, Eindhoven (2007)

19. Reed, P.: Reference Architecture: The Best of Best Practices (2002),
http://www.ibm.com/developerworks/rational/library/2774.html

20. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders Us-
ing Viewpoints and Perspectives. Addison-Wesley Professional, Reading (2005)

21. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

22. Wu, H.: A Reference Architecture for Adaptive Hypermedia Applications, PhD Thesis.
Eindhoven University of Technology, Eindhoven (2002)

23. Zimmermann, H.: OSI Reference Model - the IS0 Model of Architecture for Open Systems
Interconnection. IEEE Transactions on Communications 28(4), 425–432 (1980)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 241–255, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Role of Architectural Design Decisions in
Software Product Line Engineering

Rafael Capilla1 and Muhammad Ali Babar2

1 Universidad Rey Juan Carlos, Spain
rafael.capilla@urjc.es

2 LERO, UL, Ireland
malibaba@lero.ie

Abstract. An increased attention to documenting architectural design decisions
and their rationale has resulted in several approaches and prototype tools for
capturing and managing architectural knowledge. However, most of them are
focused on architecting single products and little attention has been paid to in-
clude design decisions in the context of product line architectures. This paper
reports our work on analyzing the existing work on architectural design deci-
sions for the specific needs of software product line engineering. We have
studied two existing tools for managing design decisions to identify the changes
required in these tools for supporting product line specific requirements. Based
on this study, we report the extensions required in the data models of the tools
and propose a unified data model to guide the tool development research for
supporting explicitly the relationships between design decisions and variability
models for software product line engineering.

1 Introduction

Early in the nineties, Perry and Wolf emphasized the importance of Design Rationale
(DR) in Software Architecture (SA) [23]. To date, the traditional approaches to
documenting software architectures have been mainly based on the description of
architecture views that reflect the interest of different stakeholders [11] [19] [24], but
little attention has been paid to capturing and managing the rationale for key design
decisions. The need to reduce the maintenance effort and to avoid architecture erosion
because decisions are never recorded requires them to be captured.

Many claims have been made about the problems caused when design decisions
are not explicitly documented [28], as they constitute a clear way to mitigate the effort
required in understanding the architecture of a system when the experts or the creators
of the architecture are no longer available. Bosch pinpoints [7] that “we do not view a
software architecture as a set of components and connectors, but rather as the com-
position of a set of architectural design decisions”. This idea, also stated in [11],
claims for methods and techniques to enable the representation and capture of archi-
tectural design decisions in parallel with their architectures. In order to bridge the
traditional gap between requirements and designs, a “new” architecture view so-called
the “decision view”, is proposed in [12], which considers design decisions as a cross-
cutting information with respect to the other traditional architecture views that have to
be documented explicitly.

242 R. Capilla and M. Ali Babar

Other research works rely on the definition of specific templates for capturing and
representing the knowledge that should be part of the description of a design decision.
Some research efforts (such as reported in [20] [31]) have proposed extensive list of
attributes for characterizing the design decisions while others [9] advocate the use of
more flexible approaches based on a list of mandatory and optional attributes that can
be tailored for different organizations and user’s needs in order to reduce the effort
spent during the knowledge capturing activity. Kruchten et al. [20] consider that Archi-
tectural Knowledge (AK) = Design Decisions + Design, and they use ontologies to describe
both the decisions and the relationships between them. Since design decisions can
bridge the gap between requirements and architectures and code, recording these
relationships [32] can benefit maintenance and evolution processes, and help to un-
derstand the root causes of changes or to estimate change impact analysis. To date,
only a few researchers have partially addressed using design decisions in the context
of software product line engineering. We assert that more work is required to provid-
ing methodological and tooling support for capturing and managing architectural
design decisions in the context of product line engineering. In this paper, we propose
a model for characterizing architectural design decisions in software product lines and
compare two existing tools for possible extension to explicitly link architectural de-
sign decisions with product line variability models.

The rest of the paper is structured as follows. Section 2 identifies product line spe-
cific features of design decisions and some approaches that explicitly consider design
decisions in product line practices. Section 3 discusses our approach to relate architec-
tural design decisions to product line features. Section 4 discusses how existing tools
for managing design decisions can support the specific needs of product lines. Section
5 describes a unified data model to guide the research on tooling support for design
decisions for product line architectures. Section 6 discusses the related work and Sec-
tion 7 describes our future direction for this line of research.

2 Product Line Engineering Features

Software Product Line Engineering (SPLE) has emerged as a successful mode of
developing software. SPLE aims to create a family of related products based on a
single architecture that can be tailored to meet the requirements of different products.
This is achieved through the identification of commonalities and variations among the
different systems of a given family which are represented in a product line architec-
ture (PLA). The required variability can be realized using different variability realiza-
tion techniques such as reported in [27]. A PLA has several unique features that allow
the creation of multiple products by means of derivation techniques [6]. Here we
discuss some of the key characteristics of PLA practices. Our discussion is focused
only on those issues of SPLE that are closely related to the architecture development
practices.

• Variability modelling: Product lines rely on the description of a set of com-
mon and variable characteristics of systems, and variability modelling deals
with the representation of the common and variable aspects through a set of in-
terrelated variation points and variants. Variability modelling is a challenging

 On the Role of Architectural Design Decisions in Software Product Line Engineering 243

activity that needs suitable tooling support for managing the hundreds of varia-
tion points in complex systems. A major weaknesses of one of the most widely
used modelling languages like UML, is that all variability concerns are diffi-
cult to be represented in a UML model. For instance, the relationships and
constraints between variation points and variants that can be represented in a
FODA tree [18] are hardly to be described in a UML diagram. Only the OCL
(Object Constraint Language) combined with UML provides better support. A
variability model is a decision model in which variation points and their vari-
ants have to be selected and instantiated for configuring a particular product.

• Binding time: This mechanism is used to delay design decisions as late as
possible. The realization of variability can also be achieved through different
binding times, such as; compilation, integration, deployment, or runtime. Dif-
ferent techniques can be used to resolve the binding time [15] of a particular
software product. In general, binding times are not described in UML architec-
ture models and they are documented separately from architectural designs.

• Variability dependencies and product constraints: Variation points and
variants may depend on other variation points. Therefore, the selection of a
certain variation point or variant may depend on a previous selection. These
dependencies are usually represented in the variability model [17] [22]. De-
pendency models have a great impact on traceability as they provide viable
paths to traverse from feature models to products and vice-versa. Frequently,
dependencies are used to delimit the scope and the number of products during
product configuration and mostly driven by economic and business factors.
For instance, more complex rules like if-then-else conditions can be defined
using a logic formula to specify product constraints. Such rules often crosscut
variability models. Because product lines are market-driven, the domain scop-
ing activity aims to define the number and types of products to be delivered
with specific constraints. Hence, when making design decisions to produce a
particular product, all the constraints should be resolved to avoid the selection
of incompatible variation points that may lead to incompatible products.

• Common and specific requirements: Traditional software development use
different types of requirements to motivate the design decisions made in the
design phase. In product lines, only a subset of these requirements are com-
mon, whilst product specific requirements motivate the decisions to character-
ize each product by means of variation points defined in the modelling phase.

2.1 Reasoning Models in Product Lines Approaches

The majority of the approaches that try to capture design decisions alongside architec-
tures do not consider the specificities of product lines. Only some proposals attempt
to do this and they try to introducing reasoning in variability models. For instance, in
[5] the authors describe a tool for supporting the analysis of feature models using an
automatic reasoning mechanism to deal with extra functional features, like for in-
stance quality aspects. This reasoning mechanism can be used to ask questions, such
as: which is the number of potential products in a given feature model? Dhungana et
al. [13] state the difficulty to transfer general architectural knowledge from tacit to an
explicit form understandable by the users, and map this concept to product line

244 R. Capilla and M. Ali Babar

variability models in which features have to be linked to architectural artifacts. More
specifically, Dhungana et al. [14] perceive decisions as variation points for asset
composition. These decisions are organized hierarchically and they become relevant if
they are made in a certain order. The consequences of a decisions are expressed a
logical dependencies. Decisions are represented in a decision model which only de-
scribes the need, the scope, and the constraints, but the same as in [5] no additional
information about the rationale or the impact of the decision is supported. In [30], the
authors address how to represent and document design decisions in product lines that
follow a compositional approach to derive the final products. This composition is
supported by the AHEAD tool suite [4], where product line features are used as build-
ing blocks of systems. In [30], decisions are documented as XML artifacts during the
synthesis of the architecture. In their approach, text descriptions for understanding the
decisions are included with product line assets. Finally, none of the tools analyzed in
[10] for modeling and managing product line variability models considers the descrip-
tion of architectural design decisions as first class entities. In most cases, the tools
only focus on how to deal with feature models or in product derivation tasks.

3 Design Decisions for Product Line Architectures

Because almost all the approaches described in section 2 suffer from the lack of sup-
port from explicit description of the decisions and their underlying reasons that ac-
complish the selection of variation points and variants in a product line, this section
presents our attempt to link both concepts as a way to include the rationale used in
architectural decisions with the definition and selection of variation points in the PLA.
Hence, we propose to associate the concept of design decision with variability models
in order to enrich the reasoning activity that takes place during product line modeling
and derivation phases. We have also designed a general model that can be instantiated
for building tool to support the proposed approach to incorporating the design deci-
sions into variability models. Following are the elements of the proposed model.

• Design decisions and variability modeling: A variability model constitutes a
decision model in which variation points and variants have to be resolved in
order to achieve a specific product configuration. From our view, the defini-
tion of these variations should be considered fine grained decisions (as op-
posed to coarse grained decisions based on design patterns and architectural
styles). Different levels of granularity in the decisions can be considered, but
from an architecture point of view, the main decisions are precisely made in
the early stages of the design phase for the core architecture whereas variation
points are introduced later to refine the classes of a product line architecture.
In our approach we propose a mapping between the design decisions that af-
fect the definition or the selection of a variation point and variant in order to
explain the reasons by which we arrived at a particular feature model.

• Binding time: The binding time should be understood in the traditional use of
product lines, but the selection of a particular binding time should also be ex-
plained as a design decision. Hence, we believe that the binding time of a par-
ticular variation point should have a decision associated with it that explains

 On the Role of Architectural Design Decisions in Software Product Line Engineering 245

the realization of such variation point in the architecture. This binding time
should not be confused with the time in which the decision is made, as all of
them are defined at design time. We assume that the binding time of a set of
related variation point should happen at the same moment. Otherwise, the re-
alization of the variability will not be feasible.

• Product constraints: In the same way as we connect different decisions with
specific relationships, we need to specify the links between variation points.
Such links are usually defined by means of logical operators such as AND,
OR, XOR, and NONE. More complex formulas can also be defined to support
crosscutting relationships in the feature model or to include functional depend-
encies between features that usually happen during the execution of a system.
These constraints delimit the scope of the products and may affect to previous
decisions. From our viewpoint, a new design decision should document each
product constraint to explain the rationale and the impact for such relationship
in the variability model. Additionally, because one constraint may depend on a
previous constraint in the variability model, the dependencies between design
decisions could be also used to define the links between different product con-
straints and to avoid duplicate networks of dependencies.

• Common and specific requirements: In order to discriminate between re-
quirements for a PLA and for a single product, we introduce a new attribute, to
discriminate between common and specific requirements.

Fig. 1. A general model that maps the decisions to requirements and architectures and its corre-
sponding relationships for product line architectures

The upper part of Figure 1 shows that design decisions are used to bridge the gap
between requirements and architectures as requirements motivate the decisions that
produce a particular architecture description. The lower part of the figure adds the
additional entities that belong to SPLE. Common and specific product requirements
motivate the decisions that lead to a concrete product architecture. These decisions are
also design decisions but enhanced with some distinct features like decisions associ-
ates to: product constraints, variability models, and binding time. Similar traces be-
tween both parts of the figure provide a complete traceability among the entities. Our
improvement in this general model is to map significant decisions to the product line

246 R. Capilla and M. Ali Babar

variability model which need to be documented explicitly. We assert that this general
model can be instantiated for building specific tool support.

4 Tool Support for Capturing Architectural Design Decisions

Having reviewed the existing variability management tools, we assert that none of
them provide sufficient support for capturing and managing design decisions and the
rationale that lead to the selection of any particular product line architecture or to a
concrete variability model. Additionally, the research tools developed for managing
architectural knowledge (such as Archium [16], AREL [29], ADDSS [8], and
PAKME [3]) do not support product line features; neither do these tool support
variability management. However, we believe that existing architectural knowledge
management tools can easily be extended to support architectural decisions and their
rationale in SPLE. In order to determine the requirements for extending the tools, we
decided to analyze the data models of two architectural knowledge management tools
(i.e., ADDSS and PAKME) we have developed. This Section provides brief descrip-
tions of both tools and the level of support provided by them for SPLE.

4.1 Product-Line Support in ADDSS

ADDSS (Architecture Design Decision Support System [8] is a web-based tool for
managing architectural design decisions (http://triana.escet.urjc.es/ADDSS). The tool
supports an iterative process in which design decisions are captured along with their
rationale and models. ADDSS supports basic dependencies between decisions and
traceability between requirements, design decisions, and architectures. The chain of
dependencies between decisions is documented explicitly for traceability purposes.

We have analyzed the current implementation of ADDSS to determine how it can
support the SPLE features described in Section 3. Our conclusion is that in order to
support the inclusion of variation points, variants and their relationships, the ADDSS
data model can be easily extended to store such information and relate this with
logical operators (such as AND, OR, XOR) to support product constraints and rela-
tionships between the variation points. Additionally, it is possible in ADDSS to asso-
ciate each design decision to its respective variation points and variants, as a way to
motivate and explain the definition or the selection of a particular variation point.
However, relating parts of the variability model to a subset of the architecture is not
possible because the current version of ADDSS cannot relate a set of design decisions
to individual architectural parts. A complementary issue that needs to be addressed is
to check the inconsistencies in the variability model to avoid incompatible product
configurations. This should be implemented separately in order to ensure the integrity
of the decision model for detecting unnecessary violations in the decisions when these
are added, changed, or removed, but at present this feature is not supported yet. Also,
including the binding time as an entity or attribute into the ADDSS data model should
not be a problem, and the same stands for discriminating between common and spe-
cific requirements that are selected during the reasoning activity in the architecting
process. We can also improve the documentation generated by the tool if we include
the information belonging to the variability model of all product architectures.

 On the Role of Architectural Design Decisions in Software Product Line Engineering 247

4.2 Product-Line Support in PAKME

Process-centric Architecture Knowledge Management Environment, PAKME, is a
web-based tool to support software architecture design, documentation and evaluation
activities [3]. PAKME provides a knowledge repository, templates and features to
capture, manage, and present architectural knowledge and design rationale. PAKME’s
knowledge repository is logically divided into two types of knowledge:

• Generic: such as general scenarios, quality attributes, design options; and
• Project specific: such as concrete scenarios, contextualized patterns, quality

factors, architecture design decisions and rationale underpinning them.

Project-specific AK consists of the artefacts either instantiated from the generic
knowledge or newly created during the software architecture process. Access to a
repository of generic AK enables designers to use accumulated “wisdom” from
different projects when devising or evaluating architecture decisions for projects in
the same or similar domains. The project specific part of the repository captures and
consolidates other AK artefacts and rationale such as concrete scenarios, design
history, and findings of architecture evaluation. A project specific AK repository is
also populated with knowledge drawn from an organisational repository, standard
work products of the design process, logs of the deliberations and histories of
documentation to build organisation’s architecture design memory.

Though, PAKME has initially been developed to support the architecting activities
for a single product, many of its artifacts (such as general scenarios, design options, and
analysis models) can be used to support the activities for designing and evaluating
PLAs. However, there needs to be certain changes required in the data model and inter-
face for establishing and maintaining explicit relationships between different artifacts of
a product specific architecture and PLAs. PAKME’s data model also needs to be modi-
fied to accommodate the requirements of the solution proposed in Figure 1. Such
changes can easily be accommodated as PAKME has successfully tailored to a specific
domain and the experience showed such modifications are easy [1].

5 Design Rationale Support for Product Line Architectures

In order to assess the data models of PAKME and ADDSS for potential extension, we
have used an illustrated example from the Intrada Product Family [25]. The objective
of this assessment was to determine how variability, product constraints, and common
and specific product requirements can be supported by both tools. We have identified
the entities in both data models that support similar or completely different features in
their respective tools. We have identified those entities that do not exist in either of
the studied tools but required to support the architectural decisions in SPLE. Table 1
(i.e., Appendix 1) shows the entities associated concepts that are similar or equal in
the studied tools as well as those which are not supported by either of the tool. The
blue rows in Table 1 show the entities of PAKME not supported by ADDSS and light
brown row identifies one feature of ADDSS not supported by PAKME).

248 R. Capilla and M. Ali Babar

5.1 A Unified Data Model for Architectural Design Decisions

Based on our analysis of the data models of ADDSS and PAKME, we have identified
the minimum number of entities required to support architectural knowledge man-
agement by ADDSS and PAKME and left out other complementary entities that char-
acterize concepts like quality attributes, quality factors, and findings included in
PAKME’s data model to support the software architecture evaluation activities. Table
2 (in Appendix 2) show the entities that comprise the proposed core data model to
integrate the two tools for supporting architectural design decisions in SPLE. Figure 2
depicts the core data model using the UML class diagram notation.

Fig. 2. Unified data model comprising the core entities that support architectural knowledge

Figure 2 shows that design decisions are related to architectures, requirements, and
to the stakeholders that make the decision. Architecture descriptions are represented
in terms of views, while design decisions comprise reusable chunks of knowledge like
patterns and style. It should be noted that “rationale” of a decision is defined as an
attribute in the proposed model, but from a higher level perspective, rationale is con-
sidered an entity in the ANSI/IEEE 1471-2000, currently under review. The data
model support decision evolution by a specific entity, which records all the modifica-
tions and changes made to a particular decision. We have kept the data model simple
and attributes of its entities as less as possible. However, the data model can easily be
extended to support new features required for SPLE. In the next Section, we demon-
strate how to extend the core model in Figure 2 to support the features of software
product lines.

5.2 Extended Data Model to Support Product Line Features

We have extended the core data model characterizing architecture knowledge shown
in Figure 2 to incorporate the features of SPLE mentioned in Section 3. We have

 On the Role of Architectural Design Decisions in Software Product Line Engineering 249

refined the description given in Figure 1 to add the entities and attributes perceived
necessary to link architectural design decisions to the product line variability model.
The result of this customization is presented in Figure 3, which shows that we have
added three different entities as well as some attributes to cater the new needs. One
new entity captures the information representing the variations points, including a
constraint rule that defines the logical relationship between the variants. In addition, a
category attribute is used to perform a classification of different variation points that
can be filtered for visualization purposes. This variation point decision is attached to
the architectural design decision which explains and motivates the definition of a
particular variation point.

Fig. 3. Extended data model to incorporate product line feature in design decisions model

We took similar steps for incorporating the variants defined in the variability
model. This fine-grained decision has also its corresponding architectural design deci-
sion which justifies the selection of particular variant in the architecture. A new bind-
ing time decision class was added to indicate the binding time of a particular variation
point or variant, which is related to the architectural design decision that indicates
why a binding time has been chosen, but also to the variant or variation point affected
by such binding time. Therefore, we can achieve a fine-granularity to define different

250 R. Capilla and M. Ali Babar

binding times for different variants and variation points. The design decision class has
also a new attribute, ProductDecision, which defines if a design decision concerns to
a product line decisions (“yes”) or to a single architecture (“no”). Other two entities
provide attributes for supporting additional product line features. The architectural
significant requirement class uses an attribute (“ProductSpecific”) to distinguish be-
tween common requirements for the entire line or for a single product, or a product
specific requirement. Finally, the architectural description entity uses a new attribute
to indicate if the description belongs to a PLA (this will imply that the variability
model has been resolved and the decisions are made). The data model shown in Fig-
ure 3 does not consider multi-product lines (a product line composed of product
lines). Neither does it represent the dependencies between design decisions as these
are supported by PAKME and ADDSS as intermediate classes that relate one decision
to others decisions. The same also applies to defining relationships between different
variation points. These aspects have been left out to avoid cluttering.

5.3 Impact of Product Line Features in the Reasoning Activity

This Section presents our analysis of the impact that product line features may have
on the reasoning process. In addition to the information aimed to support product line
decisions, the process by which a variation point or variant is selected or configured
would have some influence on the steps of the reasoning activity. For instance, typical
architectural design decisions are selected after an evaluation of the best or optimal
choices among several design options. However, the instantiation of a variation point
only depends of the selection of their variants and values. Hence, no alternative
design decisions are evaluated or stored for this case. Otherwise, the selection of a
particular binding time may imply to consider and evaluate different binding time
alternatives, which might not be the same for different architectures of subsystems.
Additionally, the existing architectural knowledge management tools like PAKME
and ADDSS must capture new relationships that are now established between the
variability model and the decisions that explain such variability model. To make the
decision capturing process more agile, these relationships should be defined internally
by the tools to alleviate the effort spent by a user to define new links. Only in those
cases where a relationship between variation points and variants has to be defined, a
user must reason about such dependency and make it explicit when capturing the
decision. Such effort can also be reduced if the dependency that models a relationship
in the variability model also serves to model the dependency between the decisions
attached to variation points and variants. Hence, product lines slightly modified
the way in which dependencies are modeled with respect to single architecture, as
the architect would define the relationship in the variability model and the tool implic-
itly uses that relationship to internally establish the relationships with its associated
decisions.

6 Related Work

Recently, many researchers have emphasized the importance of treating architectural
design decisions as first class entity, however, only a few have mentioned the use of
design decisions in SPLE. In [2], the authors present a framework for representing

 On the Role of Architectural Design Decisions in Software Product Line Engineering 251

design decisions in a SPL, which is structured as a design decision tree (DDT) where
nodes represent design decisions and branches relate nodes to each other. Some of
these nodes represent the variations in a product family. Lago and Vliet [21] show
how to introduce assumptions in UML models representing architectures and variabil-
ity concerns in SPLE. They present assumptions with feature models to show the
influence of the assumptions on the features used to model variability. The work re-
ported in [30] focuses on the reuse of design decisions in order to customize product
line using composition techniques as a step-wise refinement for product derivation.
Design decisions are captured in XML files that can be reused during the transforma-
tions needed to obtain a final product. Extensions to products and their design deci-
sions can easily be traced by viewing the ways decisions extend architectures through
successive refinements. The COVAMOF model for managing variability described in
[26] is used to support the notion of architectural design decisions in a SPL. The au-
thors map architectural concepts (including decisions) to COVAMOF concepts to
demonstrate the feasibility of capturing architectural knowledge and link this to vari-
ability models by mapping similar concepts. All these approaches attempt to map
conceptual entities related to architectural design decisions to product line variability
models and even introduce some basic notation to explain the selection of the varia-
tion points, but all of them lack detailed guidance on how to model and explicitly
represent the relationships between design decisions and a product line variability
model. Though, some of these approaches use existing PL infrastructure to add in-
formation about design rationale, they do not provide explicit data model and concep-
tual guidance about extending tools to relate the product line features with decision
models. These are some of the shortcoming of the existing approaches to describing
architectural decisions and variability modeling in SPLE that has been addressed by
the work reported in this paper. We believe that the presented data model can provide
sufficient guidance to extend the current tools or develop new ones to support explicit
relationships between architectural design decisions and variability models along with
rationale for those decisions.

7 Conclusions

This paper presents the continuation of our efforts in integrating two similar tools for
capturing and documenting architectural design decisions. Because there is a lack of
specific support for product line architecture decisions, we have merged the data
models of both tools in order to distill a common data model. The proposed unified
model supports the decisions made in a product line context in order to explain the
decisions made in variability models. Thus, thriving research area provides the neces-
sary infrastructure for systematically and rigorously incorporating the notion of
design decisions and their rationale in designing and maintaining PLAs. Our work
identifies the characteristics of architecture design decisions in the context of SPLE.
From the common model based on the data models of two architectural knowledge
management tools, we have observed that it is not very difficult to incorporate the
decisions made in a variability model to support the specificities of product lines.
However, accommodating this new information may result in a large number of me-
dium-size or fine grained decisions. Based on our research on the role of architectural

252 R. Capilla and M. Ali Babar

design decisions in SPLE and providing appropriate tool support, we believe that the
same dependencies defined for the architectural design decisions can be used to de-
fine the relationships in the variability model in order avoid introducing duplicate
dependency links. Additionally, supporting common and specific requirements is also
necessary to distinguish those decisions that are specific to a single product. For fu-
ture work in this line of research, we intend to build a web-based tool by integrating
ADDSS and PAKME’s features and extending them in order to support new ones
based on the proposed unified data model and test the new capabilities in a product
line environment.

Acknowledgements

Ali Babar’s work is supported by Science Foundation Ireland under grant number
03/CE2/I303-1. The work of Rafael Capilla is partially funded by the PILOH project
of the Spanish Ministry of Education and Research programme under grant number
URJC-CM-2006-CET-0603.

References

1. Ali-Babar, M., Northway, A., Gorton, I., Heurer, P., Nguyen, T.: Introducing Tool Support
for Managing Architectural Knowledge: An Experience Report. In: Proceedings of the
15th IEEE International Conference on Engineering Computer-Based Systems, Belfast,
Northern Ireland (2008)

2. Alonso, A., León, G., Dueñas, J.C.: Framework for Documenting Design Decisions in
product Families Development. In: ICECSS, pp. 206–211. IEEE CS, Los Alamitos (1997)

3. Babar, M.A., Gorton, I.: A Tool for Managing Software Architecture Knowledge. In: Pro-
ceedings of the 2nd Workshop on Sharing and Reusing Architectural Knowledge, ICSE
Workshops (2007)

4. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Tran-
sanctions on Software Engineering 30(6), 355–371 (2004)

5. Benavides, D., Trinidad, P., Ruiz Cortés, A.: Automated Reasoning on Feature Models. In:
Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

6. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley, Reading (2000)
7. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C., Morri-

son, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)
8. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A Web-based Tool for Managing Architec-

tural Design Decisions. In: Proceedings of the Workshop on Sharing and Reusing Archi-
tectural Knowledge. ACM Digital Library, Software Engineering Notes, vol. 31(5)

9. Capilla, R., Nava, F., Dueñas, J.C.: Modeling and Documenting the Evolution of Architec-
tural Design Decisions. In: Proceedings of the 2nd Workshop on Sharing and Reusing Ar-
chitectural Knowledge, ICSE Workshops (2007)

10. Capilla, R., Sánchez, A., Dueñas, J.C.: An Analysis of Variability Modelling and Manage-
ment Tools for Product Line Development. In: Proceedings of the Software and Services
Variability Management Workshop – Concept Models and Tools. Helsinki University of
Technology Software Business and Engineering Institut, Helsinki, Finland, HUT-SoberIT-
A3, pp. 32–47 (2007) ISBN: 978-951-22-8747-5

 On the Role of Architectural Design Decisions in Software Product Line Engineering 253

11. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures. Views and Beyond. Addison-Wesley, Reading (2003)

12. Dueñas, J.C., Capilla, R.: The Decision View of Software Architecture. In: Oquendo, F.,
Warboys, B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 222–230. Springer,
Heidelberg (2004)

13. Dhungana, R.R.D., Grünbacher, P., Prähofer, H., Federspiel, C., Lehner, K.: Architectural
Knowledge in Product Line Engineering: An Industrial Case Study. In: Euromicro Confer-
ence on Software Engineering and Advanced Applications, pp. 186–197 (2006)

14. Dhungana, D., Grünbacher, P., Rabiser, R.: DecisionKing: A Flexible and Extensible Tool
for Integrated Variability Model. In: Proceedings of the 1st Workshop on Variability Mod-
elling of Software-intensive Systems (VAMOS), LERO, UL, Ireland (2007)

15. Fritsch, C., Lehn, A., Strohm, T.: Evaluating Variability Implementation Mechanisms. In:
Procs. of International Workshop on Product Line Engineering (PLEES 2002), Technical
Report at Fraunhofer IESE (No. 056.02/E), pp. 59-64 (2002)

16. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
5th IEEE/IFIP Working Conference on Software Architecture, pp. 109–118 (2005)

17. Jaring, M., Bosch, J.: Variability Dependencies in Product Family Engineering. In: van der
Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 81–97. Springer, Heidelberg (2004)

18. Kang, K.C., Cohen, S., Hess, J.A., Novak, W.E., Peterson, A.S.: Featured-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21 ESD-90-
TR-22, Software Engineering Institute, Carnegie Mellon University, Pittsburgh (1990)

19. Kruchten, P.: Architectural Blueprints. The “4+1” View Model of Software Architecture.
IEEE Software 12(6), 42–50 (1995)

20. Kruchten, P., Lago, P., van Vliet, H.: Building up and Reasoning About Architectural
Knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

21. Lago, P., van Vliet, H.: Explicit Assumptions Enrich Architectural Models. In: Inverardi,
P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 206–214. Springer, Heidelberg
(2006)

22. Lee, K., Kang, K.C.: Feature Dependency Analysis for Product Line Component Design.
In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp. 69–85.
Springer, Heidelberg (2004)

23. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. Software En-
gineering Notes, ACM SIGSOFT, pp. 40–52 (October 1992)

24. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakeholders Us-
ing viewpoints and Perspectives. Addison-Wesley, Reading (2005)

25. Sinemma, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A Framework for Modeling
Variability in Software Product Families. In: Nord, R.L. (ed.) SPLC 2004. LNCS,
vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

26. Sinemma, M., van der Ven, J.S., Deelstra, S.: Using Variability Modeling Principles to
Capture Architectural Knowledge. In: 1st SHARK Workshop (2006)

27. Svahnberg, M., van Gurp, J., Bosch, J.: A Taxonomy of Variability Realization Tech-
niques. Software Practice & Experience 35(8), 705–754 (2005)

28. Tang, A., Babar, M.A., Gorton, I., Han, J.A.: A Survey of the Use and Documentation of
Architecture Design Rationale. In: 5th IEEE/IFIP Working Conference on Software Archi-
tecture (2005)

29. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design traceability and
reasoning. Journal of Systems and Software 80(6), 918–934

30. Trujillo, S., Azanza, M., Diaz, O., Capilla, R.: Exploring Extensibility of Architectural De-
sign Decisions. In: Proceedings of the Workshop on Sharing and Reusing Architectural
Knowledge and Design Intent (SHARK/ADI 2007), ICSE Workshops, Minneapolis, USA,
May 2007. IEEE CS, Los Alamitos (2007)

254 R. Capilla and M. Ali Babar

31. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Soft-
ware 22(2), 19–27 (2005)

32. Wang, A., Sherdil, K., Madhavji, N.H.: ACCA: An Architecture-centric Concern Analysis
Method. In: 5th IEEE/IFIP Working Conference on Software Architecture (2005)

Appendix 1: PAKME-ADDSS Data-Model Comparison

Table 1. Comparison of the entities supported in both PAKME and ADDSS data models

PAKME PAKME description ADDSS ADDSS description Matched
Stakeholder People interested in the

architecture process or
product

Users Stakeholders with
different roles
interested in
architectures

Yes

Stakeholder
Group

Define the project
access rights

Permissions Rights for each user
type

Yes

Architectural
significant
requirements
(ASR)

Are NFR (QA) Quality
goals can be derived.
An ASR must be
satisfied by one or
several design decisions

Requirements Functional and non-
functional
requirements. Only
the type, the number,
and a text description
is provided

Yes

Scenario Is a refinement of ASR
and are QA

NFR A non-functional
requirement

Partially through
requirements

Quality factors Are the factors a QA
should match

Only quality
attributes are
supported

Findings A description for the
QA that meet a
particular scenario

Not supported in
ADDSS

Analysis Model Is a reasoning
framework that reasons
about the effect of
different tactics on QA
scenarios

Not supported in
ADDSS

Design Tactic Is a design mechanism
for achieving the
desired level

Not supported in
ADDSS

Pattern Characterizes a design
solution in a given
context

Pattern Describes a design
solution. Patterns are
classified by its type,
description and an
usage example

Yes

Effect of pattern Defines the effect of the
pattern on a particular
QA

Not supported in
ADDSS

Support
Information

Captures the
background information
required to justify the
choice of a decision for
a particular scenario

Optional
attributes

Optional attributes
capture extra
information

Partially
supported

Architecture
Decision

Is a high level decision
that satisfies FR and
NFR. There are

Design
Decision

Captures the design
decision and its
rationale through a set

Yes

 On the Role of Architectural Design Decisions in Software Product Line Engineering 255

Table 1. (continued)

dependencies between
decisions.

of attributes. Basic
dependencies can be
defined but not the of
the dependency

Architecture
Decision
Rationale

Is the reason behind the
architecture

Rationale Is the reason behind
the architecture

Yes

Design history A history of decisions is
supported

Version and
responsible

Some attributes in
ADDSS are used for
the same goal

Partially
supported

Alternative Design decisions may
be related to other
design alternatives

Status and
category
attributes

ADDSS offers a
category attribute to
indicate if a decision
is alternative design
choice but also an
status to know if the
decisions has been
approved or rejected

Yes

Architecture
Description

Prescribes the
architecture to be
realized

Architecture Provides the
information about a
particular architecture
and a link to the
views supported

Yes

Architectural
View

Provides a description
for architectural views
with the images

View attribute Describes the view of
the architecture and
provides a link to it

Yes

Translation Provides multilingual
support

Not supported in
PAKME

Appendix 2: Core Common Entities between PAKME and ADDSS

Table 2. Main common entities distilled from PAKME and ADDSS data models

Common entity Entity description
Stakeholder Are those persons interested in the architecture process or product

Architectural significant
requirements

Functional and non functional architectural significant requirements drive the
selected design decisions

General Knowledge Characterizes a design solution in a given context, like patterns or styles
Design Decision Is a high level design decision that explains the decisions and its underpinning

rationale
Decision history A history of decisions is supported
Architectural
Description

Prescribes the architecture to be realized

View Provides a description for architectural views with the images

Towards a Dependency Constraint Language to

Manage Software Architectures

Ricardo Terra and Marco Tulio de Oliveira Valente

Institute of Informatics, PUC Minas, Brazil
rterrabh@gmail.com,mtov@pucminas.br

Abstract. This paper presents a dependency constraint language that
allows software architects to restrict the spectrum of dependencies that
can be presented in a given software system. The ultimate goal is to
provide designers with means to define acceptable and unacceptable de-
pendencies according to the planned system architecture. Once defined,
such restrictions will be automatically enforced by a tool, thus avoiding
silent erosions in the architecture. The paper also presents first results
of applying the language in a Web-based system.

1 Introduction

Software architecture is usually defined as the set of design decisions that have
impact on each aspect of the construction and evolution of large software sys-
tems. This includes how systems are structured into components and constraints
on how components should interact [3,2]. Despite its unquestionable importance,
the documented architecture of a system – if available at all – usually does
not reflect its actual implementation. In practice, deviations from the planned
architecture are usually common, due to unawareness by the developers part,
conflicting requirements, technical difficulties etc [6]. More important, such de-
viations are usually not captured and resolved, leading to the phenomena known
as architecture erosion and architectural drift [10].

This paper is centered on the observation that improper inter-module depen-
dencies are one of the principal sources of architectural violations. For instance,
suppose a strictly layered system Mp, Mp−1, . . . , M0 (where M0 represents the
module in the lowest level of the hierarchy). Therefore, in this system, Mi can
only use services provided by module Mi−1, i > 0. Any system change that
violates this rule is, in fact, undermining its planned architecture. As another
example, suppose a web-system that includes a controller module C and a mod-
ule P that encapsulates persistence services. Clearly in this system, C is the only
module that can handle HTTP requests and responses (using servlets or another
similar technology). In the same way, P is the only module that can rely on the
services provided by a persistence framework (such as Hibernate, for example).

Current mainstream programming languages support information hiding by
the means of interfaces and visibility modifiers (such as public, private, and
protected). However, they do not provide means to restrict inter-module de-
pendencies. In practice, any public service provided by a module (or class) M

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 256–263, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a Dependency Constraint Language 257

can be used by any other system module. In order to tackle this problem, we
are working on a dependency constraint language that allows software archi-
tects to restrict the spectrum of dependencies that can be presented in a given
software system. This language should provide designers with means to define
acceptable and unacceptable dependencies according to the planned system ar-
chitecture. Once defined, such restrictions can be automatically enforced by a
tool integrated to common programming environments (such as Eclipse). Thus,
our ultimate goal is to provide architectural conformance by construction, using
a static, declarative dependency constraint language.

The remainder of this paper is organized as follows. Section 2 provides a pre-
liminary description of the dependency language that we are designing. Section
3 illustrates the application of the proposed language in a simple case study.
Section 4 discusses related work and Section 5 concludes.

2 Dependency Constraint Language

The main purpose of the proposed language is to support the definition of con-
straints between modules. In our notation, a module is just a set of classes.
Suppose, for example, the following module definitions:

module A: org.foo.persistence.*
module B: org.foo.view.*, org.foo.model.Ticket, org.foo.model.Driver

Module A includes all public classes from the package org.foo.persistence.
Module B includes all public classes from the package org.foo.view and classes
Ticket and Driver from the package org.foo.model.

The language supports the definition of the following constraints:

– Only classes from module A can depend on types defined in module B, where
the possible dependencies are as follows:

• only A can-access B: only classes declared in module A can access non-
private members of classes declared in module B. Access in this case
means calling methods, reading or writing to fields.

• only A can-declare B: only classes declared in module A can declare
variables of types declared in module B.

• only A can-handle B: only classes declared in module A can access and
declare variables of types declared in module B. In other words, this is
an abbreviation for only A can-access, can-declare B.

• only A can-create B: only classes declared in module A can create ob-
jects of classes declared in module B.

• only A can-extend B: only classes declared in module A can extend
classes declared in module B.

• only A can-implement B: only classes declared in module A can imple-
ment interfaces declared in module B.

• only A can-throw B: only methods from classes declared in module A
can throw exceptions declared in module B.

258 R. Terra and M.T.O. Valente

– Classes declared in module A cannot depend on types defined in module B,
where the dependencies that can be forbidden are as follows:

• A cannot-access B: no classes declared in module A can access non-
private methods or fields of classes declared in module B.

• A cannot-declare B: no classes declared in module A can declare vari-
ables of types declared in module B.

• A cannot-handle B: no classes declared in module A can access or de-
clare variables of types declared in module B.

• A cannot-create B: no classes declared in module A can create objects
of classes declared in module B.

• A cannot-extend B: no classes declared in module A can extend classes
declared in module B.

• A cannot-implement B: no classes declared in module A can implement
interfaces declared in module B.

• A cannot-throw B: no methods from classes declared in module A can
throw exceptions declared in module B.

– Classes declared in module A must depend on types defined in module B,
where the dependencies that can be required are as follows:

• A must-extend B: all classes declared in module A must extend a class
declared in module B.

• A must-implement B: all classes declared in module A must implement
at least an interface declared in module B.

3 Case Study

In order to illustrate and motivate the need of a dependency language we have
devised and implemented the main modules of an electronic government infor-
mation system used by state’s department of motor vehicles to handle traffic law
violations, such as exceeding the speed limit, parking in an unauthorized area,
driving without license etc. The devised system, called Traffic Ticket Online, has
a web-based user interface that drivers can use to search for detailed informa-
tion about their tickets and also paying tickets online. On the other hand, traffic
authorities use the system to register tickets and perform associated operations.

Architecture: As described in Figure 1, the architecture of the system follows the
Model-View-Controller (MVC) architecturalpattern [2]. The Model layer contains
Business Objects (BO), Data Transfer Objects (DTO), and Data Access Objects
(DAO). Business Objects represent objects that encapsulate business rules and be-
havior. Data Transfer Objects represent domain entities such as drivers, tickets,
law violations etc. Data Access Objects provide an abstract interface to the under-
lying persistence framework. Particularly, in the current system implementation
we are using Hibernate for object/relational persistence. The Controller layer con-
tains components that monitor user inputs, manipulate the Model, and update the
View accordingly.The Traffic TicketOnline architecture prescribes that the Struts
framework should be used by the Controller to handle HTTP requests. Such re-
quests are then forwarded to a facade component, which provides a unique point

Towards a Dependency Constraint Language 259

Fig. 1. Traffic Ticket Online Architecture

of access to the model. Finally, the View layer is composed by Java Server Pages
(JSP). In summary, the architecture of the system relies on patterns (MVC, Fac-
tory,Facade, Business andData-AccessObjects etc) and frameworks and technolo-
gies (Hibernate, Struts, JSP etc) that are widely used nowadays when architecting
web-based systems.

Constraints: Figure 2 illustrates how the proposed language can be used to reg-
ulate acceptable and unacceptable dependencies in the Traffic Ticket Online
system. Initially, a sequence of modules definitions are used to group related
classes (lines 1-12). It can be observed that the defined modules closely resem-
ble the modules presented in the architectural view of the system depicted in
Figure 1. This provides evidence that the proposed language can regulate de-
pendencies between entities normally used by software architectures to describe
their systems.

In lines 13-23, sequences of only constraints are defined. Essentially, such con-
straints are fundamental to guarantee that the original MVC architecture is
preserved during the evolution of the system. For example, some of the con-
straints define that only classes from the Controller layer can handle (i.e. access
and declare) types from the Facade module and from the Struts framework (line
16). This avoid for example the View layer to bypass the Controller and access
directly the Model. Moreover, a specific constraint specifies that the Facade is
the only module in the Controller layer that can handle types associated to busi-
ness objects (line 18). In summary, the constraints express a key property about
the dependencies directions in the MVC pattern: the Controller should depend
on the Model, but the Model does not depend on the Controller. Instead, the
Model only depends on the Hibernate persistence framework (line 20).

260 R. Terra and M.T.O. Valente

1: %Modules
2: module Tags: com.tto.view.taglib.*
3: module Controller: com.tto.controller.action.*
4: module ControllerExcp: com.tto.controller.exception.*
5: module Facade: com.tto.controller.facade.*
6: module BO: com.tto.model.bo.*
7: module DAO: com.tto.model.dao.*
8: module HibernateDAO: com.tto.model.dao.hibernate.*
9: module DTO: com.tto.model.dto.*
10: module ModelExcp: com.tto.model.exception.*
11: module Hibernate: org.hibernate.*
12: module Struts: com.opensymphony.xwork2.*

13: %Can constraints
14: only Controller can-create, can-declare DTO
15: only Controller can-access com.tto.service.FacadeService
16: only Controller can-handle Facade, Struts
17: only Controller, Facade can-throw ControllerExcp
18: only Facade, BO can-handle BO
19: only BO can-handle DAO
20: only HibernateDAO can-handle Hibernate
21: only com.tto.model.BOFactory can-create BO
22: only com.tto.model.DAOFactory can-create DAO
23: only BO, DAO can-throw ModelExcp

24: %Cannot constraints
25: Facade cannot-access DTO

26: %Must constraints
27: BO must-extend com.tto.model.bo.DefaultBO
28: Controller must-extend com.opensymphony.xwork2.ActionSupport
29: DAO must-implement com.tto.model.IDefaultDAO
30: DTO must-extend com.tto.dto.Persistent
31: com.tto.dto.Persistent must-implement java.io.Serializable
32: Facade must-implement com.tto.facade.IFacade
33: HibernateDAO must-extend

com.tto.model.dao.hibernate.DefaultHibernateDAO
34: HibernateDAO must-implement DAO
35: Tags must-implement javax.servlet.jsp.tagext.JspTag

Fig. 2. Dependency Constraints Rules for the Traffic Ticket Online system

It is also important to mention the role of the different can relations types
in the constraints of lines 13-25. For example, using the proposed constraint
language, it was also possible to make explicit the difference between factories
and clients of a given type. For example, there is a constraint that requires that
BOs can only be created in the BOFactory class (line 21). Moreover, another
constraint expresses that only the Facade can rely on BO’s services, (but it cannot
create such objects, as described). As another example, exceptions defined in the

Towards a Dependency Constraint Language 261

module ControllerExcp can only be throwed by methods in the Controller
and Facade modules (line 17).

In lines 26-35, sequences of must constraints are defined. Such constraints
are used to guarantee that all classes that integrate a given module implement
or extend a given type. Usually, this type can be defined in another system
module or can be provided by an external framework. As an example of the first
case, each BO must extend an internal class named DefaultBO (line 27). As an
example of the second case, each class in the Tags module must implement the
javax.servlet.jsp.tagext.JspTag interface (line 35). Such constraints are
important to guarantee that the system correctly reuses services provided by
other classes and frameworks. In some way, they contribute to guide developers
to use external frameworks correctly, as prescribed by the system architecture.

4 Related Work

Over the past decade, at least the following techniques have been proposed to
deal with the architecture erosion and drift problems.

Constraint Languages: Sangal et al. have proposed the use of Dependency Struc-
ture Matrixes (DSM) to reveal existing dependencies and the underlying archi-
tectural pattern of complex software systems [11]. They also propose the use of
design rules in order to highlight DSMs entries that violate the planned archi-
tecture. The dependency constraint language proposed in this paper is inspired
in the design rules language. However, Sangal’s language supports the definition
of only two forms of relations between modules: can-use and cannot-use. On
the other hand, our language allows the definition of a richer set of relations.

Architectural Recovery and Conformance Tools: Architectural recovering frame-
works rely on reengineering technologies to extract high-level architectural mod-
els from existing systems [13,4,8]. The main challenge of such frameworks is
recovering models that are similar to the ones sketched by developers, in terms
of conciseness, abstraction level and architectural elements. Reflexion models
(RM) aim to handle such problem by requiring developers to provide a high-
level model of the planned system architecture and a declarative mapping be-
tween such model and the source code [9]. A RM-based tool (such as the SAVE
Eclipse plug-in [5,6]) highlights convergence, divergence and absence relations
between the high-level model and the source code. However, we believe that
our approach supports a richer set of relations between modules than the lan-
guage used in RMs. Moreover, our language is designed to foster architecture
conformance by construction, i.e. using our language modifications that violate
the planned architecture are detected soon after they are implemented in the
source code.

Architectural Description Languages (ADL): ADLs represent another alternative
to enforce architectural conformance by construction [7]. Such languages allow
developers to express the architectural behavior and software systems structure
in an abstract, declarative language. Code generation tools can then be used to

262 R. Terra and M.T.O. Valente

map architectural descriptions to source code in a given programming language.
However, such approaches normally require the use of specific architecture-based
development tools and compilers, in order to keep the generated code synchro-
nized with the architectural specification. A variant of this approach advocates
the extension of current programming languages with architectural modeling
constructs, which in practice demand developers to dominate a completely new
programming language [1]. Our approach tackles this problem proposing a sim-
ple and declarative language to define dependencies constraints between mod-
ules. Stafford and Wolf have proposed a dependence analysis technique for use
with ADLs [12]. Therefore, their main objective is to support architectural con-
formance at the ADL-level, i.e. the proposed technique does not require the
availability of the system source code.

5 Conclusions and Future Work

Our research is centered on three hypotheses: (i) that improper inter-module
dependencies are an important source of architectural violations; (ii) that a small,
declarative dependency constraint language as the one presented in the paper
can be employed to detect many of such violations; (iii) that such language
can be integrated with a small overhead to the common edit/compile/run cycle
performed by developers when building software systems with modern IDEs,
thus enforcing architecture conformance by construction.

The Traffic Ticket Online system presented in Section 3 has provided us with
encouraging feedback about the application of our dependency language. How-
ever, in order to provide more robust arguments that can support the first two
hypotheses mentioned above we are starting to apply the proposed language to
a human resource management system, used by the Brazilian Federal Govern-
ment to handle information about public employees. Previous versions of this
system are accessible from a CVS repository, which will allow us to apply our
dependency language to several of such versions. The ultimate goal is to demon-
strate that the proposed language could have been used to prevent important
violations perpetrated to the original system architecture.

Our initial plan is starting the second case study by first defining the depen-
dency constraints of the evaluated system. Next, we will check such constraints
manually, i.e. our plan is starting the implementation of a tool that can check the
proposed constraint language only after finishing this second case study. The rea-
son is that we believe that the study will help us to improve the language, possibly
suggesting new kinds of dependencies not supported by its initial version.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture
to implementation. In: 22nd International Conference on Software Engineering, pp.
187–197 (2002)

2. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley,
Reading (2002)

Towards a Dependency Constraint Language 263

3. Garlan, D., Shaw, M.: Software Architecture Perspectives on an Emerging Disci-
pline. Prentice-Hall, Englewood Cliffs (1996)

4. Kazman, R., Carrière, S.J.: Playing detective: Reconstructing software architecture
from available evidence. Automated Software Engineering 6(2), 107–138 (1999)

5. Knodel, J., Muthig, D., Naab, M., Lindvall, M.: Static evaluation of software ar-
chitectures. In: 10th European Conference on Software Maintenance and Reengi-
neering, pp. 279–294 (2006)

6. Knodel, J., Popescu, D.: A comparison of static architecture compliance checking
approaches. In: IEEE/IFIP Working Conference on Software Architecture, p. 12
(2007)

7. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

8. Muller, H.A., Klashinsky, K.: Rigi a system for programming-in-the-large. In: In-
ternational Conference on Software Engineering, pp. 80–87 (1988)

9. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the
gap between source and high-level models. In: SIGSOFT Symposium on Founda-
tions of Software Engineering, pp. 18–28 (1995)

10. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. Soft-
ware Engineering Notes 17(4), 40–52 (1992)

11. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: 20th Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pp. 167–176 (2005)

12. Stafford, J.A., Wolf, A.L.: Architecture-level dependence analysis for software sys-
tems. International Journal of Software Engineering and Knowledge Engineer-
ing 11(4), 431–451 (2001)

13. Yan, H., Garlan, D., Schmerl, B.R., Aldrich, J., Kazman, R.: DiscoTect: A system
for discovering architectures from running systems. In: 26th International Confer-
ence on Software Engineering, pp. 470–479 (2004)

Automating Architecture Trade-Off Decision

Making through a Complex Multi-attribute
Decision Process

Majid Makki, Ebrahim Bagheri, and Ali A. Ghorbani

Faculty of Computer Science,
University of New Brunswick, Fredericton, Canada

{majid.makki,e.bagheri,ghorbani}@unb.ca

Abstract. A typical software architecture design process requires the
architects to make various trade-off architecture decisions. The architects
need to consider different possibilities and combinations of tactics and
patterns to satisfy the elicited quality scenarios of the intended software
system, some of which may be conflicting or inconsistent in nature. The
formation of the correct composition of these elements of architecture
decisions for the satisfaction of the quality scenarios can be considered
an important art of the architect; however, in cases where the architect
is dealing with multiple stakeholders with inconsistent preferences, this
can be an awkward task. In this paper, we formalize this process as a
complex multi-attribute decision making procedure within the Attribute
Driven Design methodology. In such a context, we are able to incremen-
tally elicit the communal preferences of the stakeholders with regards to
the available quality scenarios and hence assist the software architect in
methodically making the architecture decisions with the highest expected
utility for the stakeholders.We will also introduce our implementation of
a decision support system, which embodies the methods proposed in this
paper, along with a case study.

1 Introduction

It is commonly accepted that quality and functional requirements are orthogonal
in nature. The functional requirements of a software system could be achieved
even without considering the notion of software architecture; therefore, the main
focus of software architecture is on the satisfaction of quality requirements such
as modifiability, availability, and performance. In addition, quality attributes of
a software system need to be considered collectively and an isolated analysis of
those attributes may not result in a comprehensive solution. For instance, Bass
et al point out that the full satisfaction of security and availability measures is
not simultaneously achievable. Better stated, active redundancy is a reasonable
architecture tactic for elevating the level of availability of a software system;
however, this may increase the vulnerability of the system [2].

The Attribute Driven Design (ADD) method is a recursive decomposition
process aiming to address the aforementioned issue where at each stage a subset

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 264–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automating Architecture Trade-Off Decision Making 265

of the quality scenarios that need to be satisfied are chosen and some architecture
decisions, in terms of applying appropriate tactics or patterns, are made [3].
On the other hand, the importance of acquisition processes and management
of uncertainties associated with the requirements and technical solutions have
been previously mentioned in [4]. Even though, the formality of the ADD method
assists the architects in effectively designing the architecture, the success of the
decision making process involved in each iteration of ADD is highly dependent
on the ability of the architect to interact with and elicit stakeholders’ preferences
over the quality scenarios.

In their recent critical analysis of the software architecture domain, Shaw and
Clements have put forth several intriguing ideas that need to be addressed [10].
There, the development of practical and sophisticated automated architecture
design assistants that can aid the architects in exploring the relationship be-
tween architectural design decisions and quality attributes is considered to be
important. In an early attempt, a rule-based expert system called ArchE has
been developed at SEI-CMU that serves as a software architecture design assis-
tant by incorporating a body of knowledge about how quality requirements can
be achieved using different architecture patterns and tactics [1]. The required
input of this tool is a set of quality requirements (limited to performance and
modifiability at this stage) and the output is the architecture design for the given
requirements.

Experience shows that different stakeholders may prefer dissimilar quality re-
quirements [2], which will impose various design constraints that can be
inconsistent or conflicting in practice. In this paper, we take a more stakeholder-
centric approach to architecture trade-off decision making in which the conflict-
ing stakeholders’ preferences over the quality requirements are incrementally
elicited through a utility elicitation procedure. The architecture decision with
the highest expected utility (based on the elicited utilities of the outcome of each
architecture decision for the stakeholders) would be suggested as an optimal ar-
chitecture decision in each round.

2 ADD+: An Extension to ADD

In the ADD method, it is assumed that all of the quality requirements of the
system have been elicited and in each round, the architect is responsible for
choosing a subset of the concrete quality scenarios that need to be satisfied at
that stage. An architect may struggle with two main issues in this approach:

1. Stakeholders may have dissimilar preferences over quality scenarios. For ex-
ample, the maintenance organization stakeholder usually prefers modifia-
bility quality scenarios over performance, whereas the end user stakeholder
prefers the vice-versa. One simplistic solution is to elicit the stakeholders’
ordinal preferences with regards to the quality scenarios where quality sce-
narios of higher order are preferred over the others. In this approach, one
may infer that quality scenarios of lower order should be sacrificed for the
satisfaction of higher order quality scenarios when conflicts arise. However

266 M. Makki, E. Bagheri, and A.A. Ghorbani

while in most cases, a decision considering a trade-off between the conflicting
quality scenarios results in a better outcome, the decision about the optimal
trade-off is dependent upon the architect’s expertise.

2. Although software architecture plays the most important role in achieving
the quality requirements, architecture decisions do not always guarantee the
promised level of quality for the software with regards to the quality scenar-
ios of that iteration. This is due to various factors such as later decisions
made in detailed design, implementation and deployment issues, and prob-
able runtime uncertainties [2,5,9]. Such kind of uncertainty does not allow
the architect to be fully confident of the outcomes of his/her decisions while
interacting with the stakeholders in the preference elicitation process.

Fig. 1. The Workflow of ADD+

In this paper, we propose an extension to the ADD method (ADD+) by
incorporating the role of system stakeholders in making architecture trade-off
decisions. At each stage of ADD+, the architect chooses a subset of concrete
quality scenarios, and specifies those quality scenarios within this subset that
are conflicting. Based on the conflicting scenarios, the architect is required to
propose various alternative architecture decisions along with the degree of quality
scenario satisfaction obtained as a result of that architecture decision. A realistic
approach should not make oversimplifying assumptions with regards to the de-
gree of satisfaction of each quality scenario due to the uncertainties imposed by
the before-mentioned factors. Once the set of alternative architecture decisions
and their probable outcomes are specified by the architect, the preference elici-
tation process of the ADD+ commences: in each round of preference elicitation,
system stakeholders are asked to answer a standard gamble query. Based on the
stakeholders’ responses, the utility of the outcomes of each architecture decision
can be deduced. The architect can iterate over the steps of preference elicitation

Automating Architecture Trade-Off Decision Making 267

until he/she is satisfied with the gained knowledge about the stakeholders’ pref-
erences. This information would allow the architect to make the optimal choice
with regards to the most suitable architecture decision. Figure 1 summarizes this
process.

3 Formalizing the Decision Problem

It is possible to model the process of stakeholders’ preference elicitation and
architecture decision making as a multi-attribute decision problem [6,7]. Here,
the multi-attribute decision problem consists of attributes which represent the
degree of satisfaction of the conflicting quality scenarios and the outcome is the
quality of the resulting software system marginalized to those quality scenarios.

Let CQSi = {cqsi
1, ..., cqs

i
n} be the set of conflicting quality scenarios at the ith

iteration of ADD+, Ri = {ri
1, ..., r

i
n} be their corresponding response measures

and ADi = {adi
1, ..., adi

k} be the set of alternative architecture decisions at that
iteration. Furthermore, suppose ri

j is a random variable, and ∀adi
l ∈ ADi, adi

l

satisfies cqsi
j to the degree of ri

j according to a Gaussian probability distribution
P i

l,j ∼ N(μi
l,j , σ

i
l,j)

1.
Since the utility elicitation and decision making methods adopted here [6,7]

assume that the set of outcomes is finite and countable, a discrete approximation
of the Gaussian probability distribution is needed. The Pearson-Tukey approxi-
mation provides a three point representation of the Gaussian distribution. The
representative points are the 5%, 50%, and 95% points and the probability of
each point is 0.185, 0.63, and 0.185, respectively [8]. For a response measure ri

j

and an architecture decision adi
l, these three points are ri

l,j1
= −0.645×σi

l,j+μi
l,j ,

ri
l,j2

= μi
l,j , and ri

l,j3
= 0.645 × σi

l,j + μi
l,j .

Suppose that we define a snapshot of the software system as a n-tuple s, which
represents the state of the system at a certain time with regards to Ri. The set
of all snapshots of the system, denoted Si, consists of all possible combinations
of configurations of Ri according to ADi. Si contains k × 3n snapshots. The
aim of the decision making problem is to choose the architecture decision whose
corresponding snapshots (along with the probabilities of occurrence of those
snapshots) satisfy the stakeholders’ preferences and interests the most. So the
set of attributes in this problem is Ri, the set of alternative decisions is ADi,
and the set of feasible outcomes is Si.

4 Stakeholders’ Preference Elicitation

The aim of preference elicitation is to elicit the utility of the snapshots for the
stakeholders so that decision making can be done more confidently. The domain
of a utility function u is Si and its range is the real interval [0,1]. We do not
need to know the complete utility function in order to make the optimal decision.
1 Any other probability distribution could alternatively be used if a discrete approxi-

mation of it exists.

268 M. Makki, E. Bagheri, and A.A. Ghorbani

Instead we represent the utility of each snapshot by its lower and upper bounds.
An elicitation query asks the stakeholders whether the utility of a snapshot is
greater or less than a given value. This type of question can be easily translated
into a standard gamble query. The query reduces the uncertainty in the calcu-
lation of the expected utility of each decision and thus helps the architect in
confidently making the optimal decision.

According to [6], the number of possible elicitation queries, in each round of
elicitation, is equal to the number of intersection points. An intersection point
for an outcome (here, the outcomes of a decision are snapshots associated with
it) is a point in its utility interval that is decisive for optimal decision making i.e.
the true utility of the outcome being greater or less than the intersection point
changes the optimal decision. The main difference between the original version
of utility elicitation method and the one adopted here is that we are dealing
with more than one stakeholder. We skip the details of calculating intersection
points since it is independent of the number of stakeholders. For a more detailed
discussion on how to calculate intersection points see [6] .

The optimal utility elicitation strategy is the one which asks a query with the
highest expected value. The expected value of a query is the expected amount of
increase in the expected utility of the optimal decision after asking that query.

The expected utility of the optimal decision at the current stage (before asking
the query) can be calculated using the following equation:

EUOCD =
∑

si

psi ×
u↑

si
+ u↓

si

2
(1)

where si is an obtained snapshot after making the optimal decision, psi is the
probability associated with it, u↑

si
and u↓

si
are the upper and lower bounds of its

utility, respectively.
In order to calculate the expected utility after asking the query, all possible

stakeholders’ responses to that query need to be considered. Note that each
individual stakeholder has two possible responses to a specific query, thus the
number of possible communal responses to a query is equal to the number of all
stakeholders plus one. The probability of a communal response can be calculated
using the following equation:

pcr =

(η

η>

)

× Πη
i=1pi (2)

where η is the number of stakeholders, η> is the number of stakeholders who
stated that utility of the corresponding snapshot is greater than the intersection
point, and pi is the probability of an individual response. The probability of an

individual response is either
u↑

si
−ip

u↑
si
−u↓

si

or
ip−u↓

si

u↑
si

−u↓
si

where ip is the intersection point

at which the query is being asked.
After receiving the stakeholders’ responses, the utility of the snapshot for

which the query had been asked can be updated by two alternative approaches.

Automating Architecture Trade-Off Decision Making 269

One approach is to perform a voting process and update the utility interval of the
snapshot based on the majority vote (e.g. if most of the stakeholders stated that
the utility of the snapshot is greater than the intersection point, lower bound of
the utility interval would be updated to the intersection point). However, this
approach ignores the minority vote. A more sound approach is to alter both
boundaries of the utility interval based on the number of votes given to each
response. In this approach, we update the utility boundaries according to the
following equations:

u↓
si

←− ip −
η< × (ip − u↓

si
)

η
(3)

u↑
si

←− ip +
η> × (ip − u↑

si
)

η
(4)

Note that introducing weights to represent stakeholder importance is a trivial
task e.g. in our implementation one can define three End User stakeholders and
only one Marketing stakeholder to show that the End User stakeholder is three
time more important than the Marketing stakeholder. As mentioned above, the
expected value of a query is equal to the difference between the expected utility
of the optimal decision after the query and the expected utility before asking
the query (see Equation 1). The expected utility after a query, can be calculated
by the multiplication of the probability of each communal response (Equation
2) with the expected utility after receiving the specific response. In order to
calculate the expected utility after receiving the responses, we can update the
boundaries according to Equations 3, 4 and the expected utility of the optimal
decision is recalculated. Therefore, after calculating the expected value of each
query, we can choose the query with the highest expected value. The round of
elicitation would be stopped either when there is no more query with expected
value greater than zero or when the expected value of the best query does not
satisfy the architect.

5 Case Study

Based on these theoretical foundations, a decision support system has been im-
plemented, which assists the architect in eliciting the stakeholders’ preferences
and making the optimal decision with the highest expected utility. In this sec-
tion, we will go through a case study using the implemented system.

We customize the case of the Garage Door example from [2] where three
different stakeholders are involved: the End User Stakeholder, the Marketing
Stakeholder and the Maintenance Organization Stakeholder. Two high priori-
tized quality scenarios are defined: a modifiability quality scenario called Low
Recovery Time After Failure and a business quality scenario called Low Price.
Obviously, the Marketing Stakeholder prefers the latter and the Maintenance Or-
ganization Stakeholder prefers the former. However, the End User Stakeholder
prefers a low price system that can be fixed in a reasonable amount of time in
case of failure.

270 M. Makki, E. Bagheri, and A.A. Ghorbani

Table 1. Response Measures of the Case Study

Low Price ($200) Low Recovery T ime(20 minutes)

Monolithic Design N(90,2) N(60,10)
Structured Design N(75,5) N(85,4)

At the first stage, the architect needs to know whether he should design a
monolithic system or a well-structured system. Assume that performance qual-
ity scenarios of this project would not be affected by applying modifiability
tactics such as maintaining semantic coherence, generalizing the module, infor-
mation hiding, maintaining existing interfaces and using an intermediary. How-
ever, these tactics may have a significant effect on the price of the system i.e. one
of the business quality scenarios. This is due to the time required to implement
these tactics and moreover the experienced programmers needed to implement
them. The most important issue the architect has to deal with is which architec-
ture decision would satisfy the community of stakeholders the most. We will see
how the decision support system implemented for ADD+ can assist the architect
in this case.

In the system, the architect may define the set of quality scenarios. The re-
sponse measures of Low Price and Low Recovery Time are defined as $200 and
20 minutes, respectively by the system requirement specifications. After start-
ing the first iteration, the architect would choose these two quality scenarios
as the set of conflicting scenarios for this iteration. Afterwards, alternative de-
cisions could be defined in the manner shown in Figure 2. Table 1 shows the
normal distributions over response measures of conflicting scenarios in this case.
One of the decisions, which is called Monolithic Design, satisfies the Low Price
quality scenario to a higher degree (μ = 90) more confidently (σ = 2) and the
Low Recovery Time scenario to a lower degree (μ = 60) with more uncertainty
(σ = 10).

After starting the rounds of elicitation, one of the influential queries posed to
the stakeholders could be interpreted as the following:

Which option would you prefer?

1. A system which costs $220 and can be fixed in 28 minutes after a failure.
2. A system which costs the lowest possible amount and can be fixed in the

lowest possible amount of time with 90% chance or a system which costs the
highest amount and can be fixed in the highest amount of time with 10%
chance.

Note that the first choice in the above query is the interpretation of one of
the snapshots generated by the support system automatically.

After some rounds of elicitation, the expected value of the next query was 0.09
and the expected utility of the Monolithic Design was 0.68 and the expected
utility of the Structured Design was 0.71. We stopped the elicitation process
due to the low expected value of the next query. Note that the expected utility

Automating Architecture Trade-Off Decision Making 271

Fig. 2. Defining an Architecture Decision in the Decision Support System for ADD+

of alternative decisions are not accurate, but a rational decision could be made
because the increase in the expected utility would not be greater than 0.09.

Since the end users are not satisfied either with a low price system with an
extremely high recovery time or with an expensive system, which is recoverable
in a reasonable amount of time, even the Marketing Stakeholder is not in favor
of sacrificing the modifiability quality scenario for the sake of a lower price. As a
result, the suggestion of the system, being the selection of the Structured Design
alternative, makes sense.

6 Concluding Remarks

In this paper, we have reported a preliminary investigation of the applicabil-
ity of decision theory and utility elicitation techniques for addressing the issue
of stakeholders’ preference elicitation by introducing an extension to the ADD
method. Even though, we are at the early stages of our investigation, we be-
lieve that techniques employed here and some other similar techniques would be
beneficial to the domain of software architecture. Many sources of uncertainty
reported to be associated with software architecture decisions can be managed
by theoretical foundations provided by decision theory and be automated using
AI techniques based on those theories.

As future work, we are interested in both theoretical and empirical exploration
of the relationship between the complexity of the conflicting quality scenarios
and the number of elicitation queries posed to the stakeholders. We are also
considering the evaluation of the proposed ADD+ method and its supporting
toolset through various real-world case studies.

272 M. Makki, E. Bagheri, and A.A. Ghorbani

Acknowledgements

The authors graciously acknowledge the funding through grant RGPN 227441
from the National Science and Engineering Research Council of Canada
(NSERC) to Dr. Ghorbani.

References

1. Bachmann, F., Bass, L., Klein, M.: Preliminary design of arche: A software archi-
tecture design assistant. Tech. rep., Software Engineering Institute Carnegie Mellon
(2003)

2. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Longman Publishing Co., Boston (1998)

3. Bass, L.J., Klein, M., Bachmann, F.: Quality attribute design primitives and the
attribute driven design method. In: van der Linden, F.J. (ed.) PFE 2002. LNCS,
vol. 2290, pp. 169–186. Springer, Heidelberg (2002)

4. Brown, A.W., McDermid, J.A.: The Art and Science of Software Architecture. In:
Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 237–256. Springer, Heidelberg
(2007)

5. Celiku, O., Garlan, D., Schmerl, B.: Augmenting architectural modeling to cope
with uncertainty. In: Proceedings of the International Workshop on Living with
Uncertainties (IWLU 2007), co-located with the 22nd International Conference on
Automated Software Engineering (ASE 2007), Atlanta, GA, USA, November 5
(2007), http://godzilla.cs.toronto.edu/IWLU/program.html

6. Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive util-
ity elicitation. In: Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intel-
ligence, pp. 363–369. AAAI Press / The MIT Press (2000)

7. Fishburn, P.C.: Utility theory for decision-making. Wiley, New York (1970)
8. Pearson, E.S., Tukey, J.W.: Approximate means and standard deviations based

on distances between percentage points of frequency curves. Biometrika 52(3-4),
533–546 (1965)

9. Poladian, V., Shaw, M., Garlan, D.: Modeling uncertainty of predictive inputs in
anticipatory dynamic configuration. In: Proceedings of the International Workshop
on Living with Uncertainties (IWLU 2007), co-located with the 22nd International
Conference on Automated Software Engineering (ASE 2007), Atlanta, GA, USA,
November 5 (2007), http://godzilla.cs.toronto.edu/IWLU/program.html

10. Shaw, M., Clements, P.C.: The golden age of software architecture. IEEE Soft-
ware 23(2), 31–39 (2006)

http://godzilla.cs.toronto.edu/IWLU/program.html
http://godzilla.cs.toronto.edu/IWLU/program.html

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 273–280, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Representing Service-Oriented Architectural Models
Using π-ADL

Marcos López-Sanz1, Zawar Qayyum2, Carlos E. Cuesta1, Esperanza Marcos1,
and Flavio Oquendo2

1 Kybele Research Group
Rey Juan Carlos University

Mostoles – 28933 Madrid Spain
marcos.lopez@urjc.es, carlos.cuesta@urjc.es,

esperanza.marcos@urjc.es
2 VALORIA Laboratory

University of South Brittany
Tohannic Campus, Vannes 56017 France

zawar.qayyum@univ-ubs.fr, flavio.oquendo@univ-ubs.fr

Abstract. Despite the well-known advantages of applying the MDA proposal to
SOA developments, there are still some gaps that need to be filled. At PIM-
level, for example, there is no possibility of having an executable version of the
system as it solely comprises technologically independent models. In order to
solve this we propose to formalize the architectural model at this level with
π-ADL, an ADL supporting the description of dynamic and evolvable architec-
tures like SOA itself is. Since π-ADL allows the definition of executable ver-
sions of the architecture, the specification written embodies a prototype of the
system at the PIM-level. We illustrate this by describing a real case study based
on the SMPP standard for sending SMS messages.

Keywords: Service-Oriented Architecture, Model-Driven Architecture, PIM-
level modelling, π-ADL.

1 Introduction

Service orientation has emerged as a leading technological trend due to its advantages
for cross-organization integration, flexibility and scalability. As the Service-Oriented
Computing (SOC) paradigm [2] is largely established as the de-facto solution for
emerging information society challenges, many Software Engineering areas are taking
advantage of services, ranging from the field of Software Architecture to the defini-
tion of software development processes [3].

Taking a deeper look at the methodological field we found strategies that benefit
from and contribute to the SOC paradigm. The model-driven approach and the
Model-Driven Architecture (MDA) proposal in particular [8], are amongst the best
examples [1]. However, and despite the well-known advantages of MDA, this ap-
proach lacks in the ability to define early executable versions of the system. Taking
into account the separation in abstraction levels stated by that proposal, it is not until

274 M. López-Sanz et al.

the lower level (PSM) when the characteristics of a specific technology are reflected
in the developed models and therefore when it is possible to get a working prototype.
In this paper we study that problem applied to SOA development, focusing on a pos-
sible solution by means of using an executable Architecture Description Language
(ADL) for the definition of the system architecture. This study is accomplished within
a MDA-based methodological framework called MIDAS [2].

In previous work [4] we defined the architectural metamodel at the PIM level sup-
porting all the principles of SOA. Providing the role of the architecture in MIDAS [6]
and the necessity of an early executable version of the system, we have found that
using an ADL is the best option for achieving that goal. We have chosen π-ADL [9]
for the representation of the service architecture. π-ADL is suitable for that purpose
mainly because, first, it allows the representation of the features and constraints of
services reasonably and consistently and, second, it allows the representation of dy-
namic architectures such as SOA.

The structure of the paper is as follows: Section 2 gives an overall view of the three
main concepts considered in this paper: π-ADL, MDA and SOA. Section 3 presents a
case study used to illustrate the benefits of using π-ADL for describing SOA when
architectural models. Finally, Section 4 discusses the main contributions of this article
and some of the future works.

2 Previous Concepts

In this section we present the foundations of MDA and the MIDAS methodological
framework, in which the architectural model is framed and used; SOA and the con-
cepts involved in the definition of the architectural model; and π-ADL for the formal-
ization of dynamic service architectures.

2.1 MDA and the MIDAS Methodological Framework

The main contribution of this article (i.e. to achieve an executable representation of
the PIM-level system architecture using π-ADL) is part of a much broader research
effort: the refinement of MIDAS [2], a complete development framework based on
the MDA principles.

MIDAS follows an ACMDA (Architecture-Centric Model-Driven Architecture)
approach [6]: it defines a method for the development of information systems based
on models and guided by the architecture. The architecture is considered to be the
driving aspect of the development process as it allows specifying which models, ele-
ments inside models or relationships within models should be created during the en-
tire software development process.

With an architectural view of the system at PIM level, we ensure that there are no
technology or implementation constraints in the model. Moreover, it facilitates the
establishment of different PSM-level models according to the specific target platform
from a unique PIM model. However, as stated in the introduction, this has as main
drawback the impossibility of having a precise executable version of the system.

 Representing Service-Oriented Architectural Models Using π-ADL 275

2.2 Service-Oriented Architectural Metamodel

This subsection explains briefly the elements contained in the metamodel used to
define service-based architectural models at PIM level in MIDAS. For a deeper
explanation, please refer to [4].

Services are computational entities in charge of a resource and which offer
functionalities associated to that resource in the form of operations. Those service
operations are considered as atomic functionalities that collaborate to build a joint
description of the service. The distinction between operation types is made depending
on its synchronicity. In asynchronous operations the requester of the operation does
not wait for the answer or return value (if any). In turn, in synchronous operations the
requester will wait for the answer or return value (that always exists).

Services relate, communicate and interact with each other through contracts. The
main property of a contract is the message exchange pattern describing the message
flow between the contracted services. We reduce the pattern types for message ex-
change to three alternatives. ‘One-way’, in which no response is expected;
‘Query/Response’, in which there is an explicit answer to the operation requested;
and, finally, ‘Dialogue’, in which the concrete protocol can be complex and, there-
fore, it must be represented by means of a state machine.

Services can be classified depending on different criteria: the kind of interaction
(interaction services or ‘pure’ services), their atomicity (simple or composite services)
or the role played within the architecture (basic services or supporting services).

According to the kind of interaction. Services capable to perform synchronous op-
erations are clearly identified as interaction services. Services not offering any syn-
chronous operation need not to be particularly marked as they are considered ‘pure’ or
‘traditional’ services.

According to the atomicity of the service. Simple services represent behaviours of
the system that do not entail the invocation of any other service defined within the
system. Their functionality is satisfied entirely by means of the operations they de-
fine. On the contrary, composite services are identified as services in which service
coordination is needed. This coordination can be achieved by means of choreo-
graphies or by using orchestration. The latter refers to the existence of a ‘special’ ser-
vice in charge of carrying out a workflow defined as a complex operation involving
the invocation of external service operations. The former, on the other hand, repre-
sents a coordination environment in which each service remain autonomous and in
which no party member is master over any other.

According to the role played in the architecture. Basic services offer operations
related to the functionalities defined in the business process of the system. Services
with no direct relation to the modelled system functionality but with the performance
of several other operations necessary for the rest of services to operate correctly are
known as ‘supporting services’. Among them we specifically identify two: orchestra-
tion services; and discovery services, understood as architectural entities that act as
dynamicity enactors by providing the four common operations that set up a dynamic
environment (link, unlink, create and destroy) [5].

276 M. López-Sanz et al.

2.3 Foundations of π-ADL

π-ADL [9] is a language designed for defining software architectures and is formally
founded on the higher-order typed π-calculus described in [7].

In a π-ADL program, the top level constructs are behaviours and abstractions. Each
behaviour definition results in a separate execution entry point, meaning that the pro-
gram will have as many top level concurrent threads of execution as the number of
behaviours it defines. Abstractions are reusable behaviour templates and their func-
tionality can be invoked from behaviours as well as other abstractions. An abstraction
is capable of receiving a single argument when invoked.

The body of a behaviour or an abstraction can contain variable and connection dec-
larations. Connections provide functionality analogous to channels in π-calculus: code
in different parts of behaviours or abstractions can communicate synchronously via
connections, and connections can also connect behaviours with abstractions or ab-
stractions with abstractions. Connections are typed, and can send and receive any of
the existing variable types, as well as connections themselves.

3 Architecture Model of a Case Study with UML and π-ADL

The aim of the selected case study is to emulate the functionality of a SMPP [11]
gateway system by means of services. SMPP stands for Short Message Peer-to-Peer
Protocol and is a telecommunications industry protocol for exchanging SMS mes-
sages between peer entities (Short Message Service Centres). Through a service inter-
face a user is able to send SMS text messages to multiple addressees. Although the
system is made up by many other elements, here we focus only on the building blocks
and functionalities depicted in Figure 2.

«innerP rovider»
Reception

Subsystem

«innerP rovider»
Storage

Subsystem

«innerP rovider»
SM S Processing

Subsystem

«outerP rovider»
M assive SM S

System

+ + + +

«businessContract» «businessContract» «businessContract»

«AsynchOp» sendSM S ()

«orchestrationServ»
Reception Service

«AsynchOp» storeSM S()
«SynchOp» getPendingSM S()
«AsynchOp» updateS tatus ()

« interactionServ»
SM S M anager Service

«AsynchOp» updateSM SStatus ()

«orchestrationServ»
SM S Sender Service

«AsynchOp» updateC redit ()
«SynchOp» authenticate()

«interactionServ»
Secure Data Service

«SynchO p» deliverSM S()

«interactionServ»
SM S Center

-Pattern = O neW ay

«servContract»
DataU pdate

-Pattern = OneW ay

«servC ontract»
Storage

-Pattern = Query/R esponse

«servContract»
InfoR etrieval

-Pattern = D ia logue

«servContract»
Shipping

-Pattern = Query/R esponse

«servContract»
Consultation

C lient

-Pattern = Q uery /Response

«servContract»
M obileCapabilities

-Pattern = O neW ay

«servContract»
StatusU pdate

«SynchOp» locateService ()

« interactionServ»
Directory Service

-Pattern = Query/R esponse

«servC ontract»
servLocation

Fig. 1. UML model of the architecture of the case study

Next, we present part of the architectural model specification emphasizing the as-
pects of π-ADL that provide an adequate solution for our system as well as explaining
how the structures and principles of π-ADL are adapted to our vision of PIM-level
service architecture:

 Representing Service-Oriented Architectural Models Using π-ADL 277

Representation of a service and its operations. Services represent computating enti-
ties performing a specific behaviour within the system architecture and thus they are
specified by means of π-ADL abstractions (see Listing 3.1 for the specification of the
ReceptionService).

value ReceptionService is abstraction () {
 outConn, inConn:Connection[view [operation: String, data: any]];
 output, input:view [operation: String, data: any];
 if (input::operation == "sendSMS") do {
 via SendSMS send input::data
 where {resultConn renames resultConn};
 via resultConn receive result;
 compose {
 via outConn send result;
 and done; }}}

Listing 3.1. Specification of the ReceptionService

Every service abstraction defines its own communication channels through input

and output connections. The data acquired and sent by these connections comprises a
description of the operation and the data associated to that message. Depending on the
operation requested, the service abstraction will transfer the control of the execution
to the corresponding operation. Operations are also specified by means of abstractions
as they encapsulate part of the functionality offered by services. Like any other ab-
straction used in the description of the service architecture, operation abstractions will
receive the information tokens through connections, sending back an answer when
applicable.

In π-ADL, communication through the connections is performed synchronously.
This means that communication with operations is synchronous. Therefore, the se-
mantics associated with the asynchronous operations are lost since the abstraction will
be blocked in a send operation until any other abstraction in the architecture perform a
receive operation over that channel. In order to model asynchronous operations, the
specification can be placed in one of the sub-blocks of a compose block, with the sec-
ond sub-block returning immediately with the done keyword.

Representation of contracts. As stated previously, services relate and communicate
through contracts. Within the architecture these contracts are active connectors in
charge of enabling the message exchange between services according to a specific
pattern, represented by means of the programmatic specification of a state machine.
Similarly, connectors in π-ADL are represented by means of abstractions.

In a static service environment, in which contracts between services are established
at design time, all the information needed by a contract to correctly fulfil its behaviour
(message exchange pattern and contractors) is defined and initialized internally within
the contract abstraction when the system starts. In dynamic environments, however,
this is normally accomplished by transferring all the information through the channel
opened simultaneously when the abstraction is executed.

Listing 3.2 depicts part of the analysis of a state of the message pattern execution.
In it, it is shown how, in order to send anything to one of the services connected
through the Shipping contract, a compose structure should be used: first to send the
data through the connection and second to execute the abstraction and unify the con-
nections.

278 M. López-Sanz et al.

Because of the dynamic nature of service architectures, contract abstractions can be
reused as the instances of the services they communicate can vary during the lifecycle
of the system. In order to achieve this behaviour, contracts (or more appropriately
abstractions performing the contract role) must be able to dynamically instantiate the
channel that they have to use to send or receive the data transferred in each moment.
To deal with this issue π-ADL defines the dynamic(<connection_name>) operator.
This operator represents one of the main advantages for dynamic architecture specifi-
cation since π-ADL allows the transference of connections through connections.

...
if (state::via_SERVID == "S") do{
 compose {
 via outConnectionS send inData;
 and
 via dynamic(input::ServConnGroup(0)::SERVID) send Void
 where {outConnectionS renames inConn,inConnectionS renames outConn};
 }
}else do{
 via outConnectionC send inData;}
...

Listing 3.2. Fragment extracted from the Shipping contract

Representation of dynamism. In our case study, In order to send the SMS messages
stored on the database, it is necessary to know which specific service should be used.
To achieve that behaviour it is essential to be aware of the existence of a specialized
service attending to requests from services asking for other services to perform tasks
with specific requirements. This represents a dynamic environment since it is neces-
sary to create a communication channel that did not exist at design time but is discov-
ered when the system is in execution (i.e. when the SMSManagerService must send
the SMS texts to a concrete SMSCenterService).

In a service-oriented environment the dynamicity may occur in several scenarios:
when it is necessary to create a new contract between services or when the new ele-
ment to add is another service (or service type). In those cases it is mandatory to have
a special service in charge of performing the usual operations that occur in dynamic
environments, i.e. link, unlink, create and destroy of contract abstractions (inclusion
of new services is a topic left for ongoing research). This service will be the Direc-
toryService shown in Figure 2.

Provided that the DirectoryService already knows the SERVID of any
SMSCenterService requested, the tasks it performs when queried for a specific service
include: the creation of the contract needed to communicate with the SMSCenterSer-
vice and the connection that will be used by both the SMSSenderService and the con-
tract. The information provided by this service for the SMSSenderService comprises a
connection to the contract allowing the communication with the SMSCenterService.
The new contract created will receive as initial information, the SERVID of the
SMSCenterService that it will connect with and the connection channel that should be
used to communicate with it.

Representation of service composition. Coordination among services can be achieved
by defining choreographies or orchestrations. Choreographies can be formalized with
π-ADL by means of shared connections. Orchestrations, in turn, depend mostly on the

 Representing Service-Oriented Architectural Models Using π-ADL 279

code specified inside a unique abstraction belonging to a service playing the role of co-
ordinator of the composition.

In our case study the only service taking the orchestrator role is the SMS Sender
Service which coordinates the access to the storage subsystem (using the SMS Man-
ager service), the retrieval of the information of the concrete SMSCenterService to be
used to send the SMS texts by invoking the Directory Service and finally the
SMSCenterService to complete the desired functionality.

4 Conclusions and Future Works

MDA is one of the current leading trends in the definition of software development
methodologies. Its basis lies in the definition of model sets divided in several abstrac-
tion levels together with model transformation rules. This separation in abstraction
levels allows the reutilization of models at different stages of the development and
favours the migration from one platform to another. This aspect is crucial when taking
into account some technological approaches that have come up in the last years. The
principles of the SOC paradigm and its inherent features for system integration and
interoperability make MDA a suitable approach for the development of SOA solu-
tions. In that sense, several research efforts have been carried out to cope with the
complexity of defining methodological frameworks for and based on the SOC princi-
ples. One of those methodologies is MIDAS, in which we frame our research work.

While defining MDA-based frameworks, the architecture has been demonstrated to
be the ideal source of guidance of the development process since it reflects the struc-
ture of the systems embedded in its components, the relations among them and their
evolution during the lifecycle of the software being developed. In the case of MIDAS,
we have defined UML metamodels for the PIM-level view of the architecture.

In this work, and in order to solve the initial lack of early prototypes in MDA-
based developments, we have proposed to give a formal definition of the system ar-
chitecture by means of an ADL. Specifically we have chosen π-ADL because of its
support for representing dynamic and evolvable architectures as well as the largely
faithful compiler tool available for this language. Moreover, by using a formal repre-
sentation of the system we can use mathematical formalisms to validate the UML
models created for each of the abstraction levels defined within MIDAS.

There are many research lines that arise from the work presented in this paper. One
research direction is, given the already defined UML notation and metamodel for the
π-ADL language, the definition of transformation rules between the UML metamodel
of the architecture at PIM-level and that of the π-ADL language. Another open re-
search line is the definition of the PSM-level architectural model as well as the influ-
ence of the election of π-ADL as the ADL of choice when defining technologically
dependent architectural models.

Acknowledgements

This research is partially granted by project GOLD (TIN2005-00010) financed by
the Ministry of Science and Technology of Spain, the IASOMM project
(URJC-CM-2007-CET-1555) co-financed by the Rey Juan Carlos University and the

280 M. López-Sanz et al.

Regional Government of Madrid, and the Spanish project ‘Agreement Technologies’
(CONSOLIDER CSD2007-0022, INGENIO 2010).

Bibliography

[1] Broy, M.: Model Driven, Architecture-Centric Modelling in Software Development. In:
Proceedings of 9th Intl. Conf. in Engineering Complex Computer Systems (ICECCS
2004), pp. 3–12. IEEE Computer Society, Los Alamitos (2004)

[2] Cáceres, P., Marcos, E., Vela, B.: A MDA-Based Approach for Web Information System
Development. In: Workshop in Software Model Engineering (retrieved March 2007),
http://www.metamodel.com/wisme-2003/

[3] De Castro, V., Marcos, E., López-Sanz, M.: A Model Driven Method for Service
Composition Modeling: A Case Study. Intl. Journal of Web Engineering and
Technology 2(4), 335–353 (2006)

[4] López-Sanz, M., Acuña, C.J., Cuesta, C.E., Marcos, E.: Modelling of Service-Oriented
Architectures with UML. In: Proc. of FOCLASA 2007, pp. 21–36 (2007)

[5] Magee, J., Kramer, J., Sloman, M.: Constructing Distributed Systems in Conic. IEEE
Transactions on Software Engineering 15(6), 663–675 (1989)

[6] Marcos, E., Acuña, C.J., Cuesta, C.E.: Integrating Software Architecture into a MDA
Framework. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 127–
143. Springer, Heidelberg (2006)

[7] Milner, R.: The Polyadic π-Calculus: A Tutorial. Logic and Algebra of Specification.
Springer, Heidelberg (1993)

[8] OMG. Model Driven Architecture. Miller, J., Mukerji, J. (eds.), Document No.
ormsc/2001-07-01 (retrieved May 2006), http://www.omg.com/mda

[9] Oquendo, F.: π-ADL: An Architecture Description Language based on the Higher Order
Typed π-Calculus for Specifying Dynamic and Mobile Software Architectures. ACM
Software Engineering Notes 3 (May 2004)

[10] Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and
Directions. In: Proc. of WISE 2003, Roma, Italy, December 10-12, pp. 3–12 (2003)

[11] SMPP Forum. SMPP v5.0 Specification (retrieved September 2007),
http://www.smsforum.net/

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 281–289, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Managing Dynamic Evolution of Architectural Types

Cristóbal Costa-Soria1, Jennifer Pérez2, and José Angel Carsí1

1 ISSI, Dept. of Information Systems and Computation,
Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

2 Escuela Universitaria de Informática,
Technical University of Madrid (UPM), Ctra. Valencia km. 7, 28051 Madrid, Spain

ccosta@dsic.upv.es, jenifer.perez@eui.upm.es, pcarsi@dsic.upv.es

Abstract. Software systems evolvability is more and more required in current
software developments, in order to provide systems with enough flexibility to
adapt to future requirements. The evolvability in the field of Software Architec-
ture can be classified into two kinds: dynamic reconfiguration or dynamic archi-
tectural type evolution. The former enables an architecture to change its
configuration at run-time, by creating or destroying architectural element
instances and their links dynamically. The latter enables an architecture to
change entirely its specification at run-time, by introducing new architectural
element types and connections or by modifying the type and the running in-
stances of its architectural elements. This paper presents an approach to address
how to dynamically evolve the architectural types of a system from a platform-
independent view. This approach identifies the different concerns involved in
the adaptation process by encapsulating them into aspects, and makes use of
reflection mechanisms to perform the type updating process.

Keywords: dynamic evolution, run-time adaptation, architectural types, reflec-
tion, software architectures, AOSD.

1 Introduction

The development of current software systems is a difficult task due to their complex-
ity, heterogeneity, and the need of supporting a wide variety of non-functional re-
quirements. Since it is very difficult to predict all the future situations these complex
software systems are going to face along its lifetime, to provide evolution capabilities
is a mandatory requirement. But it is also necessary to take into account that it is very
common that such complex systems are going to be continuously and uninterruptedly
executed in very demanding environments. So, not only evolution capabilities are
required, but also dynamic evolution capabilities, which allow us to introduce changes
without stopping the system, are required.

Software Architecture is the branch within Software Engineering which provides
techniques for describing complex software systems, by hiding low level details and
highlighting their structure. The dynamic evolution of software architectures can be
classified into two kinds, depending on whether the configuration or the types of the
architecture are modified at run-time. The former, called dynamic reconfiguration
(also called structural dynamism [8]), enables a software architecture to change its

282 C. Costa-Soria, J. Pérez, and J.A. Carsí

configuration at run-time, that is, to create or destroy architectural element instances
(i.e. component and connector instances) and their links dynamically. The latter,
called dynamic evolution of architectural types (also called architectural dynamism
[8]), enables a software architecture to change its type (that is, its specification), by
introducing new architectural element types (i.e. component and connector types), by
removing existing types, or by changing the way the types of the architecture interact,
thus changing the entire composition and behaviour of the architecture.

Dynamic reconfiguration of software architectures has been addressed in other
works [2, 6]. However, a set of uncontrolled architecture reconfigurations can lead the
software system to a configuration where the system is no more operational.
Hnetynka defined this as the evolution gap problem [11], although we would prefer
the term configuration erosion because of being more descriptive. In contrast to the
term architecture erosion, which refers to the situation in which code changes but the
architecture of that code is not updated, by configuration erosion we refer to the situa-
tion where, as a consequence of several dynamic reconfigurations, the architecture has
lost its initial purpose. In order to deal with the configuration erosion problem, we
have used software architecture patterns to limit the set of dynamic reconfigurations
that can be performed on an architecture. Architecture patterns, which are based on
the notion of architectural patterns and on the PRISMA model [16], define: (i) the set
of types that can be used on a software architecture, (ii) the set of correct connections
that can be established among these types, and (iii) the constraints over the number of
instances that can be created from these connections and types. In this way, an archi-
tecture pattern will only allow those reconfigurations that make sense in the architec-
ture, thereby reducing the configuration erosion.

However, dynamic reconfiguration is not enough when also the architecture pattern,
i.e. the type of the architecture, needs to be evolved at run-time. For instance, a new
component type can only be introduced in a running system by modifying the architec-
ture pattern to allow instances of the new type to be executed. In order to change an ar-
chitecture pattern, the dynamic evolution of types is needed. The contribution of this
paper is to present an infrastructure to support the dynamic evolution of architectural
types, by using as a case study how to evolve architectural patterns. This work continues
a previous work about the dynamic evolution of simple architectural element types (i.e.
components and connectors) [7], and extends it to support the evolution of complex
architectural element types (i.e. components composed of other architectural elements
and connections). This dynamic evolution of types allows introducing new architectural
element types, modifying the existing types, modifying the connections among architec-
tural element types, creating new connections among types, etc. It is also important to
take into account that this dynamic evolution of types not only updates the specification
of the architectural element types, but also propagates the changes to their running
instances. The different concerns involved in the evolution process have been identified
and encapsulated into aspects [5], in order to allow the reuse of the same aspects in dif-
ferent entities of the system and its easy maintenance.

This work is based on PRISMA [16], an approach which combines software archi-
tectures with aspect-oriented software development. This provides the following
benefits: (1) architectural elements are used to model functional decomposition and
aspects are used to model crosscutting-concerns (functionality, coordination, evolu-
tion, etc.). Thus, components and aspects encapsulate properties thereby avoiding

 Managing Dynamic Evolution of Architectural Types 283

tangled code, and they provide good maintenance properties for supporting dynamic
evolution; (2) the Architecture Description Language of PRISMA is a formal lan-
guage, so the evolution requirements of our proposal can be easily formalized and
executed without ambiguity; (3) PRISMA software architectures can be automatically
compiled for a specific technological platform using code generation techniques, so a
technology-independent evolution approach can be defined; and (4) the PRISMA tool
supports the development of aspect-oriented software architectures following the
Model-Driven Development (MDD) paradigm [14].

This paper is structured as follows. The PRISMA approach is introduced in section
2. In section 3, our proposal to support dynamic evolution of architectural types is
presented. Related works that address dynamic evolution of software architectures are
discussed in section 4. Finally, conclusions and further works are presented.

2 PRISMA

PRISMA is an approach to develop technology-independent, aspect-oriented software
architectures [16]. The PRISMA approach consists of a model [18] and a formal As-
pect-Oriented Architecture Description Language (AOADL) [17].

In PRISMA, a crosscutting-concern can be specified by several aspects of a soft-
ware architecture, whereas an aspect represents a concern that crosscuts the software
architecture. This crosscutting is due to the fact that the same aspect can be imported
by more than one architectural element of a software architecture.

The PRISMA encapsulation of crosscutting concerns facilitates the evolution of the
system due to the fact that the change of a property only requires the change of the
aspect that defines it, and then, each architectural element that imports the changed
aspect is also updated. A PRISMA architectural element can be seen from two dif-
ferent views: internal and external. In the external view, architectural elements encap-
sulate their functionality as black boxes and publish a set of services that they offer to
other architectural elements through their ports.

PRISMA has three kinds of architectural elements: components, connectors, and
systems. Components and connectors are simple, but systems are complex compo-
nents. The internal view of a simple architectural element shows the set of aspects
that it imports (white box view). Aspects are synchronized inside the architectural
element by means of weavings relationships. A weaving indicates that the execution
of an aspect service can trigger the execution of services in other aspects. As a result,
a simple architectural element in PRISMA is formed by a set of aspects, their weaving
relationships, and one or more ports.

The internal view of a complex architectural element (system) includes a set of ar-
chitectural elements (components, connectors and other systems) and the connections
among them. A system is specified as a pattern, so that it can be reused in any soft-
ware architecture where necessary. This permits not only defining how its architec-
tural elements are connected, but also constrains the number of instances that can be
created for each one of its architectural elements, and the number of connections
allowed between the architectural element types. These constraints concern the mini-
mum and maximum cardinalities, whose default values are one and infinite, respec-
tively. For example, the pattern of a PRISMA system type allows to constrain the

284 C. Costa-Soria, J. Pérez, and J.A. Carsí

maximum and minimum number of connection instances the architectural elements of
the system can have through their respective. When a PRISMA system type is instan-
tiated, it gets an initial configuration which satisfies the architectural pattern of the
system type. This initial configuration can be modified by several reconfigurations,
but only while satisfying the system architectural pattern.

Figure 1 shows an example of how the maximum cardinality of a connection can
vary the configuration of an architecture at the instance level. The attachment defined
between the Joint component type and the CnctMUC connector type of the Teach-
Mover architecture is used to exemplify this variation (see the four possible allowed
configurations in Figure 1). In this way, architectural patterns can help to address the
configuration erosion problem, by allowing only to reconfigure architecture instances
in a suitable way.

component_port_max_card=1 ; connector_port_max_card=1

component_port_max_card=1 ; connector_port_max_card=n

component_port_max_card=n ; connector_port_max_card=1

component_port_max_card=n ; connector_port_max_card=n

Fig. 1. Different configurations of an architecture depending on the maximum cardinality of a
connection between the Joint component type and the CnctMUC connector type

3 Dynamic Evolution of PRISMA Systems

As it has been mentioned in the introduction, the contribution of this work is to pre-
sent how the dynamic evolution of types is supported in PRISMA. There is not
enough space here to describe all the details. There are however previous works about
the set of evolution services the PRISMA model [18] requires, and about the infra-
structure for the dynamic evolution of simple architectural types [7].

PRISMA systems and its configurations are changed by means of evolution services.
If a system needs to be dynamically evolved, (i.e., to change its architectural pattern),
the different instances (i.e. configurations) of the system will also need to be evolved in
order to be compliant with the new architectural pattern. This type evolution is possible
at run-time due to the fact that not only instances are executed, but also the system types
that describe them. A system type at runtime is a special component that manages both
the creation and destruction of its instances, and the evolution of the type (the specifica-
tion) it represents. Figure 2 shows a system S that is being executed and two different

 Managing Dynamic Evolution of Architectural Types 285

instances of it, S1 and S2. The figure is divided into two levels: types and instances.
This is due to the fact that the dynamic evolution is performed in two steps: first the
type is evolved (the old architectural pattern is replaced by the new one), and then the
change is propagated to each one of its instances. Next, the dynamic evolution of sys-
tems is presented in detail at this two levels.

3.1 Type Level

On the one hand, the type (ST) provides the architectural element types that can be
instantiated in the architecture and how they can be connected among them: this is the
architectural pattern that instances must conform to. In addition, the type can be seen
like a factory of instances due to the fact that it is in charge of creating and destroying
its instances. On the other hand, an instance defines a particular configuration: it has
several instances of the architectural elements described in the architecture pattern
and several connections among these instances. For example, the S1 system instance
is configured with three component instances: A1, B1 and S1_Evolver (see Figure 2).

Fig. 2. Architectural types at runtime and its dynamic evolution mechanisms

From our experience in AOSD, we have been able to identify four different common
concerns for evolving dynamically a type, in order to take advantage of the encapsula-
tion, reusability and maintenance properties that AOSD provides. These different con-
cerns have been encapsulated in four aspects that a dynamic system imports: the
TypeDescription, the Builder, the EvolutionPlanner, and the EvolutionMonitor (see Type
Level, Figure 2). The TypeDescription aspect encapsulates the architectural type specifi-
cation. In the case of PRISMA Systems, it describes the architectural pattern to which

286 C. Costa-Soria, J. Pérez, and J.A. Carsí

instances must conform to. The Builder aspect is the instance factory: it creates and
destroys instances and manages them. It creates instances using the information provided
by the TypeDescription aspect.

The EvolutionPlanner aspect provides the dynamic evolution mechanisms at the
type-level. It provides the Reify and Reflect services. Reify allows to obtain a reifica-
tion of the architectural type (i.e. a type specification, SSPEC), modify this reification
and, by reflecting this reification (Reflect service), the type evolution process is
started. First, the EvolutionPlanner aspect uses services of the TypeDescription aspect
to update the architectural type specification. Next, the new specification is propa-
gated to each system instance. Finally, the EvolutionMonitor aspect supervise if
changes have been applied or not on each running instance, in order to guarantee that
in a certain amount of time all the running instances have been evolved to the new
type specification, or at least, are compliant with.

3.2 Instance Level

Each instance is provided with mechanisms to evolve themselves, in order to enable
its autonomous evolution. Both types (ST) and instances (S1, S2) are executed in the
same platform, but this structure will help the reader to follow our approach.

Each PRISMA system with dynamic type evolution and/or dynamic reconfigura-
tion needs must import an Evolver component, which provides the mechanisms for
supporting the evolution of the architecture on which it has been imported. The
Evolver component is composed of a set of aspects related with the Dynamic Evolu-
tion concern: the Sensor aspect, the EvolutionPlanner aspect and the Actuator aspect
(there are other aspects, related to the Dynamic Reconfiguration concern, but they are
outside the scope of this paper). The Sensor aspect provides low-level services to
monitorize several properties of the architecture, such as the current configuration of
the architecture or the status of the architecture, that determine whether an evolution
can be performed safely (i.e. running transactions have been finished in a consistent
way) or not. The Actuator aspect provides low-level services to change the architec-
ture, by introducing or deleting architectural elements or connections. The Evolution-
Planner aspect (it is different from the type-level one, but they are directly connected)
is responsible for updating the architecture according to the changes reflected in the
software architecture pattern, by coordinating the actions to be performed by the Ac-
tuator and Sensor aspects.

However, as PRISMA system types only describe an architecture pattern, each
configuration (S1, S2) of the PRISMA system (S) will only be evolved in a conserva-
tive way. For instance, in the architectural pattern of S, it is described that a compo-
nent A can be connected to n instances of B. If the pattern is changed to allow only a
connection of A components to 1 instance of B components, how can be determined
which of the B instances should remain and which should be deleted? This is ad-
dressed in a conservative way: the old configuration is preserved, but new reconfigu-
rations will only be made to conform with the new architectural pattern. In this way,
the set of available reconfiguration services are those that allow to add new instances
or connections described in the architectural pattern, and those that allow to remove
old instances and connections which are not already permitted in the pattern.

 Managing Dynamic Evolution of Architectural Types 287

4 Related Works

Several works have addressed dynamic evolution of software systems [3, 8, 12].
SOFA [4] and Plastik [1] component models both provide support for dynamic recon-
figuration of software architectures. However, these works do not model how the
evolution mechanisms are provided to software architectures. Several architecture-
based approaches that provide self-adaptation capabilities [15] have emerged.
Dashofy [9] and the Rainbow framework [10] describe an architecture-based ap-
proach to provide the self-healing and the self-adaptation of running systems, respec-
tively. However, both approaches use external and centralized reconfiguration
mechanisms instead of using localised mechanisms to each system instance. Ram-
dane-Cherif [20] uses an agent-based approach to dynamically adapt software archi-
tectures. Compared to our approach, it also provides a software artifact (an agent)
responsible for the dynamic evolution of a complex component. However, it does not
address how the mechanisms for dynamic evolution are made accessible for the agent,
which is a kind of external entity of the system.

Morrison et al. [13] describes evolvable systems as structured in two functional
processes: a Producer, which provides the system behaviour (i.e. an architecture), and
an Evolver, which is able to evolve this behaviour (i.e. to change the architecture).
The Evolver process decides when to evolve the Producer process taking into account
the feedback received both from the Producer or the environment. This approach is
closely related to ours, as it provides localised change to each complex component
instance and it separates specifically functionality from evolution. In contrast, we
have separated the evolution concern by using aspects, in order to benefit the reuse
and easy maintenance they provide.

5 Conclusions and Further Work

This paper has described an approach to manage the dynamic evolution of architec-
tural element types from a platform-independent view. The infrastructure described
supports the dynamic evolution of types as well as its instances, in a consistent way
and without erode the system architecture. For that, the approach is based on the ideas
of architectural patterns and aspect-oriented development. On the one hand, architec-
tural patterns of PRISMA systems are used as a way for describing (and limiting) the
set of possible configurations on which a complex component can be dynamically
reconfigured. On the other hand, aspects are used to encapsulate the different con-
cerns involved in the dynamic evolution process. In this way, another contribution of
this work is the categorization of the main concerns to take into account when evolv-
ing software architectures at run-time. Furthermore, evolution does not depend on
external or system centralized entities. The main advantage of providing local evolu-
tion is that the encapsulation principle is preserved: an architectural type is a black
box and its evolution can only be performed by the internal mechanisms of the type,
which are aware of the internal type structure and how to change it. We are currently
working in mapping the concepts described in this paper to the PRISMANET mid-
dleware [19], which supports the execution of PRISMA architectures and its dynamic
reconfiguration. We also plan to study and compare the run-time overhead added to

288 C. Costa-Soria, J. Pérez, and J.A. Carsí

the execution of PRISMA systems by the dynamic evolution mechanisms introduced
in this work.

Acknowledgements. This work is funded by the Spanish Dept. of Sci. and Tech.
under the National Program for R+I+D, META project TIN2006-15175-C05-01 and
cofunded by the Comunidad de Madrid and the Rey Juan Carlos Univ. under the
IASOMM project URJC-CM-2007-CET-1555. This work is also supported by a FPI
grant from Conselleria d'Educació i Ciència (Generalitat Valenciana) to C. Costa.

References

1. Batista, T., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in Component-
Based Systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp.
1–17. Springer, Heidelberg (2005)

2. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A Survey of Self-Management in
Dynamic Software Architecture Specifications. In: Proc. of 1st ACM SIGSOFT Workshop
on Self-Managed Systems (WOSS 2004), Newport Beach, California, pp. 28–33 (2004)

3. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy of soft-
ware change. Journal on Software Maintenance and Evolution 17(5) (2005)

4. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a Hierar-
chical Component Model. In: 4th Int. Conference on Software Engineering Research,
Management and Applications (SERA 2006), Seattle, Washington, USA, pp. 40–48 (2006)

5. Chitchyan, R., Rashid, A., Sawyer, P., et al.: Report Synthesizing State-of-the-Art in As-
pect-Oriented Requirements Engineering, Architectures and Design. Technical Report
AOSD-Europe Deliverable D11, AOSD-Europe-ULANC-9. Lancaster Univ., UK (2005)

6. Costa, C., Ali, N., Pérez, J., Carsí, J.A., Ramos, I.: Dynamic Reconfiguration of Software
Architectures through Aspects. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp.
279–283. Springer, Heidelberg (2007)

7. Costa, C., Pérez, J., Carsí, J.A.: Dynamic Adaptation of Aspect-Oriented Components. In:
Schmidt, H.W., Crnković, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS,
vol. 4608, pp. 49–65. Springer, Heidelberg (2007)

8. Cuesta, C.E., Fuente, P.d.l., Barrio-Solárzano, M.: Dynamic Coordination Architecture
through the use of Reflection. In: Proc. of 2001 ACM Symposium on Applied Computing,
Las Vegas, Nevada, United States, pp. 134–140 (2001)

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards Architecture-Based Self-Healing
Systems. In: Proc. of 1st Workshop on Self-Healing Systems (WOSS 2002), Carolina
(2002)

10. Garlan, D., Cheng, S., Huang, S., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
Based Self-Adaptation with Reusable Infrastructure. Computer 37, 46–54 (2004)

11. Hnetynka, P., Plásil, F.: Dynamic Reconfiguration and Access to Services in Hierarchical
Component Models. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford,
J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 352–359.
Springer, Heidelberg (2006)

12. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive Soft-
ware. Computer 37(7), 56–64 (2004)

13. Morrison, R., Balasubramaniam, D., Kirby, G., et al.: A Framework for Supporting Dy-
namic Systems Co-Evolution. Autom. Software. Eng. 14(3), 261–292 (2007)

 Managing Dynamic Evolution of Architectural Types 289

14. OMG: Model Driven Architecture Guide,
http://www.omg.org/docs/omg/03-06-01.pdf

15. Oreizy, P., Gorlick, M., Taylor, R.N., Heimbigner, D., Johnson, G., et al.: An Architecture-
Based Approach to Self-Adaptive Software. IEEE Intelligent Systems 14, 54–62 (1999)

16. Pérez, J.: PRISMA: Aspect-Oriented Software Architectures. PhD Thesis, Department of
Information Systems and Computation, Polytechnic University of Valencia (2006)

17. Pérez, J., Ali, N., Carsí, J.A., Ramos, I.: Designing Software Architectures with an Aspect-
Oriented Architecture Description Language. In: Gorton, I., Heineman, G.T., Crnković, I.,
Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS,
vol. 4063, pp. 123–138. Springer, Heidelberg (2006)

18. Pérez, J., Ali, N., Carsí, J.A., Ramos, I.: Dynamic Evolution in Aspect-Oriented Architec-
tural Models. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 59–
76. Springer, Heidelberg (2005)

19. Pérez, J., Ali, N., Costa, C., Carsí, J.A., Ramos, I.: Executing Aspect-Oriented Compo-
nent-Based Software Architectures on .NET Technology. In: Proc. of 3rd International
Conference on .NET Technologies, Pilsen, Czech Republic, pp. 97–108 (2005)

20. Ramdane-Cherif, A., Lévy, N., Losavio, F.: Agent Paradigm for Adaptable Architecture.
Journal of Object Technology 3(8), 169–182 (2004)

TADL - An Architecture Description Language for
Trustworthy Component-Based Systems�

Mubarak Mohammad1 and Vasu Alagar1,2

1 Concordia University, Montreal, Canada
2 X’ian Jiaotong-Liverpool University, Suzhou, PRC
{ms moham,alagar}@cse.concordia.ca

Abstract. Existing architecture description languages mainly support the speci-
fication of the structural elements of the system under design with either only a
limited support or no support to specify non-functional requirements. In a
component-based development of trustworthy systems, the trustworthiness prop-
erties must be specified at the architectural level. Analysis techniques should be
available to verify the trustworthiness properties early at design time. Towards
this goal we present in this paper a meta-architecture and TADL, a new archi-
tecture description language suited for describing the architecture of trustworthy
component-based systems. The TADL is a uniform language for specifying the
structural, functional, and nonfunctional requirements of component-based sys-
tems. It also provides a uniform source for analyzing the different trustworthiness
properties.

1 Introduction

This paper presents a meta-architecture model that serves as a type for defining the basic
elements for building a trustworthy component-based system. These elements can be di-
vided into (1) the essential structural elements of component-based development, such
as components, interfaces, and connectors, and (2) trustworthiness features including a
safety contract and a security mechanism defined as first class architectural elements. A
system definition, when instantiated from the meta-architecture, includes hardware and
software components along with deployment configuration. Also, the paper introduces
TADL, a new architecture description language suited for describing the architecture of
trustworthy component-based systems. The meta-architecture is based on formal foun-
dation presented in our earlier work [1]. The formalism provides a formal notation
for specifying trustworthy components and a method for composing components. The
composition preserves trustworthiness properties. The formalism is supported by a ver-
ification oriented formal methodology [2] for the automatic generation of component
behavior and a model checking method for verifying the trustworthiness properties.

2 Meta Architecture

In the literature [3,5], there is a consensus that trustworthiness involves achieving avail-
ability, reliability, safety, and security. System availability, and reliability are run-time
� This research is supported by a Research Grant from Natural Sciences and Engineering Re-

search Council of Canada.(NSERC).

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 290–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

TADL - An Architecture Description Language 291

Safety

Property

Time

Constraint

Reactivity

Data

Constraint

Contract

Type

Interface

Type

User

Role

Privilege

Data

Parameter
ServiceType

Group

Architecture

Type

Connector

Type

Connector

Role Type

Component

Type

Package

Safety Contract

Security Mechanism

Software Elements

Architecture Definition

Configuration
Hardware

Component

Component Definition

System Definition

System

Element

Constraint Attribute

name Class

Aggregation

Association

Inheritance

0: n

0 : n

0 : n

n : n

1: n

1 : 1

1 : n

0 : n

1 : n

1 : 1

1 : n

n : n

n : n

n : n

1 : 1

0 : n

1 : n 1 : n

1 : n

n : n

0: n

1 : n

1 : n

0 : n

0 : n

Logical Grouping

1 : n Cardinality

1 : 1

n : n

n : n

n : n

n : 1

n : n

Fig. 1. Meta-Architecture

quality of service requirements, where as safety and security are specifiable at design
time. Hence we define them as the credentials of trustworthiness at architectural level.
We address methods for achieving availability and reliability as part of our rigorous
development process, which is under development now.

Figure 1 depicts the meta-architecture. The meta architecture that we define is a type
from which different system architectures can be created. The main building blocks
of the meta-architecture are component definition, component architecture definition,
safety contract, security mechanism, system definition, package, constraint, and at-
tribute. All the elements in the model inherit from the System Element which contains
basic class definition along with attributes and constraints. A component definition in-
cludes an architecture definition, the internal structure of the component implemen-
tation, and a safety contract specification, a description of the associations between
requests for services and their responses together with restrictions that constrain the
behavior of interactions. In addition, a component definition uses a security mechanism
to control the requests of services at its interfaces and the information communicated
through interfaces. The system definition contains hardware components description

292 M. Mohammad and V. Alagar

ElementType < name > {
(Attribute < name >)*;

}

ParameterType < name > {
< DataType >< name >;
Default < value >;}

ServiceType < name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;
(ParameterType < name >)*;}

Attribute< name > {
< DataType >< name >;
Default < value >;}

Fig. 2. The TADL syntax of Element Type, Parameter Type, Service Type, and Attribute

and system configuration specification. A package contains a collection of definitions
of related elements. Detailed descriptions and further discussion of the elements of the
meta-architecture are provided while discussing TADL features in the next section.

3 TADL

This section introduces an architecture description language for trustworthy systems
(TADL). The TADL introduces new concepts such as safety contract and security mech-
anism. Also, it provides a detailed specification of components by introducing the new
concepts service, data parameter, contract and architecture at the interface level.

In TADL, every element of the meta-architecture is described separately. The ratio-
nale behind this is to increase reuse and allow reconfiguration without affecting other
definitions. The description of an element contains: (1) element type, (2) element name,
and (3) specification of the contents of the element. Figure 2 gives an example of an ele-
ment specification. Note that (Attribute < name >)∗ means that 0 or more attributes
can be defined as part of the element. The following sections describe the elements of
the meta architecture shown in Figure 1.

Service and data parameter: Components provide/request parameterized services via
interfaces. A data parameter is a variable value passed to the component within a re-
quest for service or passed from the service within a provided service (similar to a
function parameter in C++). The definition of a data parameter includes name, data
type, and possible default value. Data types can be simple (e.g., integer, float, char, etc)
or complex data structures (e.g., queue, stack, structure, object, etc). The ADL descrip-
tion of a data parameter type is given in Figure 2. Modeling data parameters as first
class architectural elements has three important implications. These are:

– It allows modeling different types of simple and complex data communicated at the
interfaces of a component, which results in a rich communication specification.

– It provides a mechanism for securing the information passed through the interfaces
of a component. Security is essential for both the services and the data commu-
nicated at the interfaces. Therefore, explicit modeling of data parameters enables
designing information security at architectural level.

TADL - An Architecture Description Language 293

– It enables rich specification of safety contracts by regulating reactions of the com-
ponent based on values of data parameters.

Services model the functionalities provided or required by a component. A service is
provided at an interface. It can have an arbitrary number of data parameters. There is
no other ADL, that we are aware of, which explicitly defines services as architectural
elements. The service definition may include attributes in addition to data parameters.
Attributes are semantic information associated with any meta-architecture element. The
data type of an attribute can be simple or complex data structure. As an example, at-
tributes can be used to define real-time information, such as priority and worst-case
execution time, that is necessary for performing real-time schedulability analysis. Also,
the service definition can include constraints, which are invariants defined as part of the
specification of meta-architecture elements. We use a first-order predicate logic (FOPL)
for defining constraints. The syntax of the service type and attribute definitions are de-
scribed in Figure 2.

Safety contract: The explicit specification of services as first class architectural ele-
ments enriches the trustworthiness specification by providing a mechanism to regulate,
restrict, and filter services at the interfaces of a component. Regulating services en-
ables real-time schedulability analysis. Restricting services promotes safety. Filtering
services enforces security at the interfaces of a component.

Regulating services: The responses of a component are regulated by defining time con-
straints. A time constraint specifies the maximum amount of time allowed to elapse
between the time of receiving a request and the time of sending the response. This is
an essential requirement for safety critical systems where timeliness is a critical factor
in defining safety. Figure 3 shows the syntax of a time constraint. It comprises a set of
attributes and constraints, two service types defining the request and response services,
two predicates specifying which one is the request (RequestService) and which one is
the response (ResponseService), and the maximum safe time. The maximum safe time
is the time interval between the occurrence of a request and the corresponding response.

Restricting services: The responses of a component are restricted using data constraints,
a special type of constraint that is used to decide whether or not a specific response for a
requested service should be sent. The decision is based on the values of the data param-
eters associated with the service and the attributes of the requested service, the interface
through which the response is to be provided, and the component that provides the ser-
vice. The response is given only if the constraint evaluates to true. Figure 3 includes
the syntax of the data constraint.

Filtering services: The responses of a component are filtered according to the security
specification. A service request will be accepted only from a component which is exe-
cuting on behalf of a user who has a privilege to request it, and a service response will
be sent only if the user, on whose behalf the receiving component is executing, has a
privilege to receive it. Moreover, the data parameters associated with the service (re-
quested or provided) are subject to security inspection. These data information will be
filtered unless the user who sent the request or waiting for response has proper privilege
to view it. Further discussion of security mechanism is provided later on.

294 M. Mohammad and V. Alagar

TimeConstraint < name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;
ServiceType < request − name >;
RequestService
(< request − name >);
ServiceType < response − name >;
ResponseService
(< response − name >);
float MaxSafeT ime;}

DataConstraint < name > {
(Attribute < name >)*;
ServiceType < request − name >;
RequestService
(< request − name >);
ServiceType < response − name >;
ResponseService
(< response − name >);
Constraint < FOPL >;}

Reactivity < name > {
ServiceType < request − name >;
RequestService
(< request − name >);
ServiceType < response − name >;
ResponseService
(< response − name >);
(DataConstraint < name >)*;
(TimeConstraint < name >)*;

}

SafetyProperty < name > {
(ServiceType < name >)*;
Constraint < FOPL >;}

ContractType < name > {
(Reactivity < name >)+;
(SafetyProperty< name >)*;}

Fig. 3. The TADL syntax of Time and Data Constraint, Reactivity, Safety Property, and Contract

When a request for service is received by a component, it reacts by providing a
response. The association between requested services and their provided responses is
defined using reactivity. Reactivity specification is important for ensuring predictability
which is an essential requirement of safety critical systems. Reactivity can be governed
by a time constraint. That is, the response should occur within the maximum safe time.
In general, a service request may have more than one possible response. Data constraints
are used to avoid this nondeterminism. For each possible response, a data constraint is
defined such that only one data constraint can be true at an instant. Therefore, only one
response will be selected. Figure 3 includes the syntax definition of reactivity.

Safety properties are defined at the interfaces of a component to enforce safe behav-
ior. A safety property is an invariant over the behavior of a component. The behavior can
be defined using timed automata. In [2] we have provided an automated approach for
generating the behavior of a component by analyzing its architecture. A safety property
is regarded as a special type of constraint over the services provided by the component.
Figure 3 includes the syntax of safety property definition.

A safety contract type defines a nonempty set of reactivities and safety properties.
The rationale behind specifying the contract outside of the component type definition is
to allow reuse of a contract for other components that provide similar services, and to
enable reconfiguration of its specification. The reconfiguration updates maximum safe
time, data constraints, and reactivity for different system configurations and deployment
plans. Figure 3 includes the syntax of safety contract type definition.

TADL - An Architecture Description Language 295

Component architecture: The structural description of a component includes defini-
tions of interface types, connector role types, connector types, architecture types, and
component types. An interface type enumerates a finite set of services communicated
through it. An interface type can have a set of attributes and a protocol specification,
stored in an external file.

A connector role type serves as an interface to a connector. It links a connector to a
component interface. A connector is a special component that defines the connectivity
between components. A connector type definition includes a non-empty finite set of
connector role types in addition to attributes and constraints.

A component can be primitive or composite. A composite component is built by
assembling existing components and specifying their connectors. An architecture type
defines the structure of a composite component in which the constituent components
and their internal connections are specified. A component type can have multiple possi-
ble architecture types. An architecture type comprises connector types, attributes, con-
straints, and attachments. An attachment specifies how components are connected. This
is specified by linking the interface type of a connector role type with an interface type
of a component at both ends of a connector. Defining the architecture outside of the
component type definition increases reuse and allows reconfiguration of architecture
without changing the component definition.

A component type definition includes definitions of interface types, architecture
types, a contract, attributes, and constraints. If no architecture is specified then the com-
ponent type denotes a primitive component. In a composite component’s type definition,
the list of interface types that are not attached to connector role types form the external
interface types, whereas the attached ones form the internal interface types. Figure 4
presents the syntax of the structural elements’ definitions.

InterfaceType < name > {
String Protocol;
(Attribute < name >)*;
(ServiceType < name >)*;}

ConnectorRoleType < name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;
InterfaceType < name >;}

ConnectorType < name > {
(ConnectorRoleType < name >)+;
(Attribute < name >)*;
(Constraint < FOPL >)*;}

ArchitectureType < name > {
(ComponentType < name >)+;
(ConnectorType < name >)+;
(Attribute < name >)*;
(Constraint < FOPL >)*;
(Attachment
(ConnectorType.RoleType.InterfaceType,
ComponentType.InterfaceType))*;}

ComponentType < name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;
User u;
(InterfaceType < name >)+;
(ArchitectureType < name >)*;
ContractType < name >;}

Fig. 4. The TADL syntax of Interface Type, Connector Role Type, Connector Type, Architecture
Type, and Component Type

296 M. Mohammad and V. Alagar

Security mechanism: The component type definition includes a user attribute. This
attribute is set at component’s instantiation time with a value that denotes the identity
of the user on whose behalf the component executes. The value is assigned from a
domain of user identities defined at system level and represented by the user element.

The security mechanism is based on role-based security access control (RBAC). The
mechanism restricts access of services and data parameters to authorized users only.
In [1] we have defined the security property in terms of service security and data se-
curity. Service security states that: (1) for every request received at the interfaces of
a component, the request should be received from a user who has permission to re-
quest the service, and (2) for every response sent by the component, the user who will
receive the response should have permission to receive it. Data security states that:
(1) for every request received, for every data parameter in the request, the user send-
ing the request should have permission to access the data parameter, and (2) for every
response sent, for every data parameter associated with the response, the user receiv-
ing the response should have permission to access the data parameter. If a user does
not have a permission to send a request then the request will be ignored. Also, if a
user does not have a permission to receive a response, the response will not be sent.
On the same manner, if a user does not have a permission to access a data parameter,
the data parameter value is set to null value. The main concepts in RBAC are user,
group, role, and privilege. A group defines a set of related users. A user can be part
of many groups. A role defines a security responsibility that a user or a group of users
can take in the system. A privilege defines a permission to access a service or a data
parameter. A role comprises many privileges. A privilege can be assigned to many roles.

User< name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;}

Group< name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;}

Role< name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;}

Privilege< name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;}

RBAC< name > {
(Users < name >)*;
(Groups < name >)*;
(Roles < name >)*;
(Privilege < name >)*;
(User-Groups-Assignment(User,Group))*;
(User-Roles-Assignment(User,Role))*;
(Group-Roles-Assignment(Group,Role))*;
(ServiceType < name >)*;
(ParameterType < name >)*;
(Privileges-for-services

(Service,Privilege,Role))*;
(Privileges-for-data-parameters

(DataParameter,Privilege,Role))*;}

Configuration< name > {
(SystemElement < name >)+;
(Deploy(HardwareComponentType,
ComponentType))+; }

Fig. 5. The TADL syntax of RBAC and Configuration specification

TADL - An Architecture Description Language 297

The functions User-Groups-Assignment, User-Roles-Assignment, and Group-Roles-
Assignment are used to assign users to groups, roles to users, and roles to groups
accordingly.

Service privilege and data parameter privilege are the only types of privileges in the
security mechanism. A service privilege defines an access right for a service. Hence, it
is associated with services and roles using the function Privileges-for-services. A data
parameter privilege defines an access right for a data parameter. Therefore, it is associ-
ated with data parameters and roles using the function Privileges-for-data-parameters.
Figure 5 includes the TADL syntax of the RBAC specification.

System definition: A package includes definitions of all the preceding meta-architecture
elements. It is used to simplify the specification when reusing related elements. The sys-
tem definition consists of hardware components and configuration. A hardware compo-
nent is a special type of component on which the software components will be deployed
i.e. a deployment units. Resource capabilities of deployment units are specified as at-
tributes. For example, a hardware component definition can include attributes such as
number of CPUs and memory capacity. The system configuration specification includes:
(1) instances of the defined software and hardware component types, and (2) deployment
specification, assignments of software instances to hardware instances using the Deploy
function. Figure 5 includes the TADL syntax of system configuration.

4 Conclusion

This paper introduced a new architecture definition language for describing a formal
meta-architecture for the development of trustworthy systems. TADL specifications are
supported by automatic analysis techniques to verify the trustworthiness properties. A
detailed description of the meta-architecture, the rational for designing the new TADL
presented in this paper, methods for analysis and reasoning about trustworthiness, and
a case study are presented in [4].

References

1. Alagar, V., Mohammad, M.: A component model for trustworthy real-time reactive systems
development. In: International Workshop on Formal Aspects of Component Software (FACS
2007), Sophia-Antipolis, France (September 2007)

2. Alagar, V., Mohammad, M.: Specification and verification of trustworthy component-based
real-time reactive systems. In: SAVCBS 2007, Specification and Verification of Component-
Based Systems, Dubrovnik, Croatia (September 2007)

3. Avizienis, A., Laprie, J.-C., Randell, B.: Fundamental concepts of dependability. Research
report N01145, LAAS-CNRS (April 2001)

4. Mohammad, M., Alagar, V.: TADL - An Architecture Description Language for Trustworthy
Component-Based Systems. Technical Report ACTS-Trust-08-02, Concordia University (July
2008), http://users.encs.concordia.ca/∼ms moham/tadl.html

5. Schneider, F.B., Bellovin, S.M., Inouye, A.S.: Building trustworthy systems: Lessons from the
PTN and internet. IEEE Internet Computing 3(6), 64–72 (1999)

http://users.encs.concordia.ca/~ms_moham/tadl.html

L-DSMS – A Local Data Stream Management

System

Christian Hänsel, Hans Jürgen Ohlbach, and Edgar Stoffel

Department of Computer Science, University of Munich
{haensel,ohlbach,stoffel}@ifi.lmu.de

Abstract. L-DSMS is a Local Data Stream Management System. It
is a Java Program which can read an XML-file with a description of a
network of processing nodes for streaming data. L-DSMS automatically
combines all the processing nodes into a single Java program which then
processes the data. L-DSMS has a number of predefined nodes, together
with an interface for implementing new processing nodes. The generated
network can be remotely monitored and reconfigured by a client, Visu-
L-DSMS. An example application of L-DSMS is the transformation of
RDS-TMC traffic messages into KML, which, in turn, can be visualised
by Google Earth.

1 Introduction

Computer programs can operate in quite different modes. The simplest mode is:
they get started, read some data, compute something, output some results and
terminate. Another mode is the server mode: they wait for some input from a
user or a client, do something, and then wait for the next input. A further mode
is the streaming mode: they get permanently fed with data, process it, and dump
the results somewhere, while the next input is already waiting. The data may
come from sensors, or, nowadays more typically, from sources on the Internet.

Data Stream Management Systems [1,2] have been developed to connect net-
works (grids) of computers in such a way that each computer can receive data,
process them and forward the results to some other computer. The ideas behind
L-DSMS are quite similar to these kind of Data Stream Management Systems.
The main difference is that the processing takes place within a single computer,
or, more precisely, within a single Java Virtual Machine (JVM). It realises a
pipe-and-filter architecture within a JVM. Several instances of L-DSMS can of
course run on different computes and be connected in the same way as Data
Stream Management Systems.

Programs which process data streams on a single computer can be imple-
mented in different ways. The easiest way is to implement a concrete application
as a single monolithic program. A more flexible and comfortable way is to split
the program into separate “processing nodes”. Processing nodes receive data
from some standard input interface, process them in some way, and deliver the
results to some standard output interface. A particular application can then be

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 298–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

L-DSMS – A Local Data Stream Management System 299

realised by writing a program that loads the necessary processing nodes, and
connect them such that the data can be forwarded from node to node. This
seems to be the approach of the MeDICi Integration Framework [3]. Their sys-
tem allows one to connect processing nodes which are even written in different
programming languages.

Alternatively to writing an application specific program that connects the
necessary nodes, one can specify the network of processing nodes in an XML-
file. A general network configurator can then read such a specification, load the
necessary processing nodes, connects them and starts the processing. The net-
work configurator is completely independent of the actual application. Therefore
no programming is necessary any more for generating special applications. This
is the approach of the L-DSMS system, presented in this paper.

Instead of specifying the network configuration in an XML-file, one can write a
user interface that allows one to specify a particular network by arranging icons
on the screen. Yahoo pipes (http://www.jumpcut.com/pipes team) is a nice
example for this approach. It has a number of predefined nodes which process, for
example, news feeds. A user can use it to specify his particular view on Internet
messages. The Visu-L-DSMS component of L-DSMS goes halfway this line. Visu-
L-DSMS is a client program which can visualise and monitor L-DSMS networks
running on some remote servers. It can also be used to change parameters of
processing nodes in a running L-DSMS application, but so far it cannot be used
to configure a new network.

The prototype application, which has been used to test L-DSMS is a system
which receives traffic information via RDS-TMC radio signals and converts them
into KML-files, which in turn, can be displayed by Google Earth. This way,
Google Earth is able to integrate traffic information into its displayed road maps.
The URL is http://nihiru.pms.ifi.lmu.de/ge-tmc-server/GeoData.php?
type=1&format=1.

This paper describes the general ideas and concepts. The technical details and
the code are available from the L-DSMS home page (http://www.pms.ifi.lmu.
de/rewerse-wga1/ldsms/) and in a deliverable of the EU Network of Excellence
REWERSE [4].

2 Node Types

The L-DSMS system distinguishes three different node types: sources, drains and
general processing nodes. Sources push data into the system (usually by reading
them from some external source). Drains receive data from the system, and
usually forward them to some destination outside the system. Finally, processing
nodes receive data, process them and forward them to other nodes.

A source is always at the head of a production path and produces the data
that needs to be processed. Each source may produce data in a different way.
The L-DSMS core package contains sources that read data from files, sockets or
external hardware (cf. Sect. 6). In most of the cases, a source receives its data
from outside L-DSMS (e.g. from a sensor or from some data source on the web).

300 C. Hänsel, H.J. Ohlbach, and E. Stoffel

To provide additional information about the produced data, a source can
create optional meta information for each produced data package. A data packet
together with its optional meta data forms the output of a source. A source needs
to have at least one connected component that receives the output. There can be
an arbitrary number of drains or processing nodes as connected components of a
source node. Which drains or nodes are connected to a source, is specified in the
configuration file. When connecting a node to a source node, one has to ensure
that the data and meta data output types of the source are subtypes to the data
and meta data input types of all connected components. The configuration file
contains, beside the relation between sources and their connected components,
for each source node two general and some further specific attributes. The general
ones are a name and a class, which can be ‘source’, ‘node’ or ‘drain’. The
ByteArrayFileSource, for example, has the additional attributes file, delay
and repeat.

A drain is the final receiver of data, because it can not have any child com-
ponents inside of the system boundaries of L-DSMS. The data can of course
be forwarded to some receivers outside L-DSMS. A SocketDrain, for example,
forwards the incoming data to every process connected to this drain via a socket
connection. The L-DSMS core package contains drains for writing the incoming
data into files, sending them over socket connections, or simply printing them
to the console screen.

Drains can receive their data and meta data from one ore more sources or
processing nodes. The connections between a drain and its parent components
are specified in the configuration file. Besides the class attribute, each drain
has the optional attribute sourcerefs which contains the names of the parent
components for this drain. A drain can of course have further specific attributes.

Processing nodes are a combination of sources and drains and can be posi-
tioned at every possible place within a production line. They receive data and
meta data from one ore more components, process them and forward the results
to an arbitrary number of consumer nodes. Since processing nodes are sources as
well as drains, they inherit the attributes of both of them. Nodes are configured
in the same way as sources and drains. Besides node specific attributes, they all
have the mandatory class attribute and an optional name attribute. In addi-
tion they have sources (like a drain), which are specified with the sourcerefs
attribute.

3 How the L-DSMS Network Operates

When it gets started, the L-DSMS system reads a configuration file and arranges
the network of processing nodes. The network, hopefully, has some source nodes,
possibly some further processing nodes and some drain nodes. Each node, except
the drains, have a list of successor nodes, the consumer nodes, and each of them
has a consume method. The source nodes have a start method.

After the network is ready for operation, a network broker calls the start
method of each source node. It is the responsibility of the source node’s start

L-DSMS – A Local Data Stream Management System 301

method to start a thread that does the actual work. If a source node does not
start a thread, then the start method is just called only once. If this call termi-
nates, it is never called again. This makes sense if there is only one single source
node.

After a source node has assembled a packet of data, it calls a send method for
the data packet together with the meta data. The send method in turn calls the
consume methods for all attached consumers. The consume method of a node
N can do some processing and then call its send method, which in turn calls
the consume methods of all consumers attached to N. This way, eventually the
consume methods of the drain nodes get called and dump the data somewhere
outside the system.

If there is a single source node and the network has a tree structure then this
procedure passes the data through the tree in a depth first left to right order.
The consume methods could, however, start their own threads when they get
called first. Each time they get called next, they just forward the data to the
corresponding thread and terminate. The threads can then process the data in
parallel. This would result in a more breadth first like traversal through the net.

Another alternative is to implement node classes whose consume methods
synchronise data from different sources. The first time, such a consume method
is called from one source, it just stores the data locally and terminates. If it is
called a second time, maybe from a different source, it can combine the new data
with the previously stored data.

With this architecture the network broker need not manage any threads. It de-
pends on the implementation of the consumemethods to operate with or without
threads. Even an agent architecture platform can be implemented this way.

This example illustrates a very basic configuration, that prints “Hello World”
onto the screen.

Listing 1.1. examples/hello world/config.xml

1 <?xml version=” 1 .0 ” encoding=”ISO−8859−1” ?>
2
3 <s e r v e r>
4 <l o gg ing l e v e l=”INFO” />
5 <s e r v i c e s>
6 <network>
7 <source c l a s s=” g ene r i c s . S t r i n gF i l e Sou r c e” f i l e=”

examples/ h e l l o wo r l d / input . txt ”>
8 <dra in c l a s s=” g ene r i c s . ConsoleDrain ” />
9 </ source>

10 </network>
11 </ s e r v i c e s>
12 </ s e r v e r>

In line 7 of the configuration file, a StringFileSource was specified. This
FileSource reads every data from the text file, specified by the file attribute of

302 C. Hänsel, H.J. Ohlbach, and E. Stoffel

the source element (‘examples/hello world/input.txt’ in this case). In line 8, a
ConsoleDrain was specified. A ConsoleDrain prints every input to the console.
Because the ConsoleDrain is specified as a child element of StringFileSource,
every output of the StringFileSource (here, the data from the text file) is
passed to the input of the ConsoleDrain.

4 How to Extend L-DSMS

Although the L-DSMS library contains already a number of predefined node
types, every new application will need its own specific processing nodes. L-DSMS
supports adding new node types by providing corresponding interfaces and ab-
stract classes. They specify exactly how the new classes have to be implemented.

Every component that should be treated as a source node has to implement,
either directly or indirectly, the interface 〈ldsms core package〉.network.Source A
detailed description of its methods can be found in the JavaDoc documentation
at the L-DSMS project page (http://www.pms.ifi.lmu.de/rewerse-wga1/ldsms/).
The abstract class SourceImpl already implements the interface ‘Source’. It can
be used as the superclass for new Source classes.

Every new drain class has to implement, either directly or indirectly, the
interface 〈ldsms core package〉.network.Drain. The abstract class DrainImpl al-
ready implements this interface and can be used as superclass of a new drain
class. Drains that need additional attributes from the configuration file, addition-
ally have to implement the interface org.apache.avalon.framework.confi-
guration. Configurable. This ensures, that the configuration information from
the configuration file are passed to the Drain. Drains that need to be started
or stopped, additionally have to implement the interface oorg.apache.avalon.
framework.activity.Startable. This ensures, that the server starts the drain
after the configuration has been finished and that the server stops the drain if
the system is forced to terminate. This is useful, if additionally threads are used
or streams have to be opened and closed.

Processing nodes are a combination of a drain and a source. Every node has
therefore to implement both interfaces, for drains and for sources. The abstract
class Node implements both interfaces already. It can therefore be inherited by a
new node class. The most important method to implement for processing nodes
and drain nodes is consume(data,metadata). It is called by other nodes to pass
data and meta data to the current node.

5 Managing L-DSMS with VISU-L-DSMS

VISU-L-DSMS is the graphic user interface for L-DSMS that was developed to
ease the management of L-DSMS. It can manage instances of L-DSMS located
at the same host as VISU-L-DSMS, as well as instances located on remote hosts.

As shown in Fig. 1, the VISU-L-DSMS main window contains three areas
and one menu panel. At the left hand side there is the Network View, a
graphic representation of all components, together with their relationship to

L-DSMS – A Local Data Stream Management System 303

Fig. 1. VISU-L-DSMS Window

each other. Each component is represented as a node (coloured symbol) and
their relationships to each other by edges (black lines).

At the right hand side there is the Capturing View. This area contains two
frames. The upper frame is used to show the incoming data of a component
selected in the network area. The lower frame is used to show the outgoing data
of a component (the same or another one).

In the bottom area there are two tabs that provide additional information
about the selected components of the network window (the Overview Tab)
and their attributes (the Properties tab).

Once VISU-L-DSMS is connected to a running L-DSMS instance, the overview
tab shows the names of all components in a tree structure with sources being
the parents and their drains being the children (recursively). If a component is
selected in the network area, its representation in the overview tab is selected as
well, and vice versa. This gives a compact overview about the network structure
while the names of the components are listed in the overview tab.

The properties tab is used to display and edit the attributes for the last com-
ponent that has been selected. Each property is presented either as a text field,
a list or a check box. Not all attributes, however, can be edited. Editing val-
ues doesn’t affect the L-DSMS instance, until the changes are saved. Saving
attributes causes the new values to be sent over the network to the observed
L-DSMS instance and to change the corresponding node attributes. This way, a
running L-DSMS system can be controlled remotely.

304 C. Hänsel, H.J. Ohlbach, and E. Stoffel

The capturing area is used for monitoring the incoming and outgoing data of
the components. To capture data, select one or more components, either in the
network or the overview area, open the node menu and select start listening.
This opens a tab for the incoming data in the upper frame and a tab for the
outgoing data in the lower frame for each selected component. If only selected
data is to be displayed, a regular expression can be defined in the filter field.
Only the data matching the regular expression is then displayed.

The current version of VISU-L-DSMS can only change node attributes of
running L-DSMS instances. In principle it would be possible to extend VISU-L-
DSMS and allow it to also change the network configuration. This way, a program
for processing data streams could be generated just by arranging some graphic
symbols in a suitable graphical editor. The only Java programming which would
then still be necessary would be to extend the the L-DSMS library with new
types of processing nodes.

6 Predefined Node Types

The L-DSMS core package contains a library of predefined node types. In this
paper we list only the general purpose node types. A number of additional node
types have been implemented for the test application, a system that feeds traffic
information into Google Earth.

ByteArrayFileSource produces binary data by reading it from a file stream.
ByteArraySocketSource reads binary data from a socket connection. Object-
SocketSource reads objects from a socket connection. StringFileSource reads
a file as a list of strings. StringSocketSource reads strings from a socket con-
nection and sends them in the same way as StringFileSource.

ByteArrayFileDrain writes the incoming data byte arrays and meta data
byte arrays into the specified file. ByteArraySocketDrain sends the incoming
data byte arrays and meta data byte arrays into the specified socket. Console-
Drain prints every incoming data without any formating to the console. Object-
SocketDrainwrites the incoming data and meta data into the output stream of a
socket. StringFileDrainwrites the incoming data strings with UTF-8 encoding
into the specified file. StringSocketDrain writes the incoming byte strings to
every client, connected at the specified port. SpexNode filters data from an XML
stream, using the SpexProcessor and a XPath expression. The SpexProcessor
extracts from streaming XML data the elements which are described by the
given XPath expression [5].

Buffer caches information until it can be delivered to attached consumers.
ByteArray2String transforms incoming byte arrays into strings, using the spec-
ified encoding format. Cast casts the input to the specified type and filters out
any incompatible data or meta data objects. Filter tests whether the data
and meta data meets a certain condition and passes it to its drains only if
the condition is met. There is an elaborated language for specifying filters.
String2ByteArray takes as input Strings and forwards them as byte arrays. The

L-DSMS – A Local Data Stream Management System 305

parameter ’encoding’ can be used to specify the encoding format (e.g. US-ASCII,
UTF-8, UTF-16BE, UTF-16LE, UTF-16 etc.).

7 Summary

L-DSMS is a local data stream management system. The configuration XML-
files specify the structure of a processing network connecting source nodes with
drain nodes via intermediate processing nodes. A network broker, implemented
in Java, can read a configuration file and turn it into an executable Java program.
A running L-DSMS instance can be monitored and, to a certain degree, modified
remotely by Visu-L-DSMS. The system and its documentation is open source.
It comes with a library of predefined node classes, together with interfaces for
adding new node classes.

So far, only the parameters of node instances can be modified remotely by
Visu-L-DSMS. A next step could be to specify and modify the whole network
remotely, such that no XML editing would be necessary any more to configure
a data stream processing system.

Acknowledgements

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

References

1. Babcock, B., Babu, S., Data, M., Motwani, R., Widom, J.: Models and issues in data
stream systems. In: Proceedings of 21st ACM Symposium on Principles of Database
Systems (PODS 2002) (2002)

2. Golab, L., Özsu, M.T.: Issues in data stream management. ACM SIGMOD Record
(2003)

3. Gorton, I., Wynne, A., Almquist, J., Chatterton, J.: The medici integration frame-
work: A platform for high performance data streaming applications. In: WICSA
2008: Proceedings of the Seventh Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA 2008), Washington, DC, USA, pp. 95–104. IEEE Computer
Society, Los Alamitos (2008)

4. Hänsel, C.: Implementation: L-DSMS - A Local Data Stream Management
System. REWERSE deliverable A1-D10-3, Institute for Informatics, Ludwig-
Maximilians-Universität München (2008), http://idefix.pms.ifi.lmu.de:8080/
rewerse/index.html#REWERSE-DEL-2008-A1-D10-3

5. Olteanu, D.: Evaluation of XPath Queries against XML Streams. Dissertation/Ph.D.
thesis, Institute of Computer Science, LMU, Munich, 2005. PhD Thesis, Institute
for Informatics, University of Munich (2005)

http://idefix.pms.ifi.lmu.de:8080/rewerse/index.html#REWERSE-DEL-2008-A1-D10-3
http://idefix.pms.ifi.lmu.de:8080/rewerse/index.html#REWERSE-DEL-2008-A1-D10-3

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 306–313, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Independent Software Architecture Review*

Antony Tang, Fei-Ching Kuo, and Man F. Lau

Faculty of Information and Communication Technologies
Swinburne University of Technology, Australia
{atang,dkuo,elau}@ict.swin.edu.au

Abstract. Many software architecture evaluation methods, proposed by the re-
search community, have a common problem of engaging the same architects to
perform architecture design and evaluation. This violates the independence of
quality assurance and hence may lead to biased evaluation, thereby resulting in
inferior architectural design. In this paper, we analyze current approaches and
issues to software architecture quality assurance. We propose seven conditions
for architectural design quality assurance and discuss existing challenges to-
wards independent software architecture design review.

1 Introduction

Software architecture has been studied for over two decades. There are various stan-
dards such as IEEE 1471-2000 [1] which define software architecture, and research
articles such as [2] and [3] which discuss different aspects of software architecture. In
the industry, most sizeable software development organizations have a software archi-
tect role, and some of them employ architectural frameworks such as Zachman
framework, TOGAF or RM-ODP to represent architectural information.

The IEEE 1471-2000 standards defines architecture as the fundamental organiza-
tion of a system [1] and Perry and Wolf define it as a model of elements, forms and
rationale [2]. Such definitions are generic and subject to interpretations. As a result,
different architects may have different interpretations of the scope and the level of
details of an architectural design. It can logically be assumed that the more details are
included in the architectural design, the easier it is to validate the design. Such as-
sumption depends on the level of certainty that an architectural design is viable and of
good quality whilst it still depicts an abstract view of the system [4]. In other words,
how can one be assured that the architectural design would lead to a finished system
that satisfies all its requirements, both functional and non-functional?

In practice, many architecture design evaluation methods were proposed to answer
this question. However, their scope of work and process vary widely depending on
their objectives. For example, some measuring techniques evaluate quality attributes
only rather than the entire design as a whole. Moreover, some architectural review
methods only aim at evaluating selected aspects of an architecture design. Since soft-
ware architecture design is influenced by many factors, the challenge is to find a

* This work was supported in part by a grant from the DCRG scheme, Faculty of Information

and Communication Technologies, Swinburne University of Technology.

 Towards Independent Software Architecture Review 307

review method(s) that can address the quality of architectural design holistically while
keeping unnecessary subjective interpretations to a minimum. In this paper, we pro-
pose an independent software architecture review (ISAR) approach.

2 Issues of Existing Techniques

Evaluation techniques [4, 5], such as questioning techniques and measuring tech-
niques, are used for architectural design quality assurance. Among these evaluation
techniques, expert reviewers are often required to assess the architectural design.
When an evaluation is depended heavily on human expertise and face-to-face meet-
ings, its soundness relies on the review team, especially when the contents and the
details of architectural design description are not sufficiently documented. Under such
circumstances, review team and architectural team may have different interpretations
on the same design. Such phenomenon has been observed by the authors in real-life
projects. Architects who argue most strongly can win a design argument, sometimes
undermining objective assessments. This kind of scenarios has an adverse effect on
the quality assurance capability of an evaluation technique.

Questioning Techniques assess the quality of architecture via qualitative ques-
tions. Architecture reviewers perform these qualitative evaluations via design reviews
and inspections. Scenarios-based and attribute-based analysis methods such as SAAM
[6], ATAM [7], SBAR [8]; and architectural review methodologies such as AT&T’s
software architecture review and assessment methods [9, 10] belong to this category.
In these methods, reviewers analyze scenarios and quality attributes with the architec-
ture team to determine if an architectural design satisfies the goals of a system.

There are four major issues related to these methods. First, they rely on expert
analysis which is quite often a subjective process particularly when the analysis is
based on incomplete specification and unavailability of architects’ expertise. Second,
architecture design reviews rely on reviewers’ objectivity and expertise in uncovering
issues in the architecture design. The objectivity and independence of the design
evaluation may be compromised when the evaluation does not involve independent
parties.

Third, some of these methods depend on the selection of relevant scenarios to iden-
tify critical assumptions and weakness of the architectural design [5]. What scenarios
and architectural significant requirements (ASRs) [6, 7] are included in the evaluation
would influence the quality. When the selected scenarios are incomplete or their rela-
tive priorities are unclear, there would be a lot of assumptions to be made by the ar-
chitecture reviewers affecting the quality of the evaluation. Fourth, the architectural
scenarios used to test the design can remain at a conceptual level and not all aspects
of the architectural designs can be reviewed in details [8]. Thus architectural design
flaws can be hidden from the reviewers unless sufficient details become available.

The first two issues relate to the dependency of human interpretation and its objec-
tivity and the latter two issues relate to the quality and sufficiency of documentation.

Measuring Techniques assess the quality of architecture via quantitative measure-
ments. These methods include the use of metrics, simulations and prototyping to collect
information for evaluation. For instances, SBAR [9] supports simulation and mathe-
matical models to analyze software qualities such as performance or fault-tolerance;

308 A. Tang, F.-C. Kuo, and M.F. Lau

CBAM [10] and ArchDesigner [11] use utility measures for trade-off analyses; a met-
rics-based approach [12] evaluates an architecture by using module coupling and cohe-
sion to predict the software quality.

Measuring techniques are useful in dealing with certain aspects of an architectural
design but they are not comprehensive enough to assure the overall quality of the ar-
chitectural design. They have two problems. First, for all measuring models, the input
sensitivities for the studied quality attributes are crucial. Sensitivity degrees have an
impact on the confidence of predicting design quality with respect to the quality at-
tribute. For example, in Architecture Level Prediction of Software Maintenance
(ALPSM) method, the accuracy of the sensitivity of the inputs used in the software
modification model would affect the predicted maintenance effort [5]. Second, there
is a lack of accurate estimates for quality requirement budgets, and a lack of accurate
estimates on how a design model satisfies those quality properties such as perform-
ance and reliability [5, 13]. This is true for different levels of the architectural design,
especially in the detailed levels.

3 Independent Software Architecture Review (ISAR)

Early detection of problems in architectural design through evaluation techniques
reduces development costs and improves the quality of systems [5, 8, 14]. Thus, im-
proving the effectiveness of evaluation techniques (in terms of problem detection) for
architectural design is important. There are two approaches. First, one might propose
totally new evaluation techniques that outperform existing ones. Second, one might
enhance existing evaluation techniques by removing the problematic issues or reduc-
ing their negative impacts in order to achieve better evaluation. In this paper, we
adopt the latter approach.

As discussed previously, most existing evaluation techniques face the problem of
using the same architects to design and review the architectural design. Hence, human
factors may lead to biased evaluation. To obtain an objective evaluation outcome, we
argue that an Independent Software Architecture Review approach (ISAR) should be
adopted as a standard practice of independent validation and verification (IV&V)
[15]. In this section, we first analyze the barriers towards ISAR. Then, we propose
seven conditions to facilitate better reviews through ISAR, and finally discuss the
benefits as well as drawbacks towards applying ISAR.

3.1 Barriers towards an Independent Review

As discussed earlier, one key barrier of attaining independent evaluation is related to
the lack of sufficient information provided to review teams for quality evaluation,
which hinders the quality of the review process. Currently there are little or no stan-
dards on the minimum set of information necessary to support such evaluation. To
address this, architecture design evaluation should be based on a well-defined
engineering-style architectural design specification. The architectural description con-
tained in such specifications must be structured, precise and detailed to avoid subjec-
tive interpretations.

 Towards Independent Software Architecture Review 309

Another key barrier towards an ISAR approach is the subjectivity of architects and
evaluators based on their prior experience. There is no doubt that the expertise of ar-
chitecture design and review teams is important. However, as noted in [4], there is
sometimes a skepticism that exists between design and evaluation teams, the mental-
ity of “Why Should I Believe You?” It hints strongly about the recognition of experi-
ence and the existence of subjective views based on that experience in the evaluation.
Such phenomenon has been observed by the authors in real-life projects. Architects
who have the experiences and expertise can play a dominating role during design re-
view meetings, making it difficult for evaluators who are less experienced to argue
their case.

To alleviate this problem, we suggest that the architecture team capture design ra-
tionale to provide further evidences and explanations to justify their decisions. Archi-
tectural design rationale helps to explain why a design decision is made and to justify
any trade-offs [16]. They can articulate implicit constraints and assumptions in a de-
sign [17]. Most evaluation techniques, however, do not mandate the review of design
rationale. Therefore, these techniques do not validate whether the design under
evaluation was properly made under reasonable assumptions and constraints.

3.2 Supporting Independent Software Architecture Review (ISAR)

Software testing requires that the software to be tested is already programmed. Simi-
larly, to enable an independent review, sufficiently documented information must be
available. We argue that current software architecture practice does not provide all
necessary documented information for an independent review. Reviews or evaluations
are very much people dependent causing the problems discussed earlier. We there-
fore propose to work towards a design specification format that supports an ISAR
approach based on the following conditions.

1. Requirement completeness – Based on the agreed ASRs of a system, there are
no new requirements and scenarios arising from these ASRs and from the archi-
tectural design implementation.

2. Requirement conflicts detection – There are no requirements that conflict with
each other in terms of achieving the business goals of the system.

3. Architectural design completeness – All functional and non-functional ASRs
are satisfied by some design components.

4. Architectural design conflict detection – No parts of the architectural design
will be in conflict with the other parts of the design because they cannot satisfy
the constraints set by ASRs or a design.

5. Quantifiable non-functional requirements fulfillment – All quantifiable non-
functional requirements should be explicitly documented, and the architectural
design should describe how the requirements are fulfilled.

6. Soundness of design decisions – The design rationale has been sufficiently cap-
tured so that the quality assurance team can judge the soundness of key architec-
tural design decisions.

7. Architectural design sufficiency – The architectural design description should
have sufficient details and there are no design omissions that could cause archi-
tectural design changes.

310 A. Tang, F.-C. Kuo, and M.F. Lau

These seven conditions for architectural design are based on the fundamental rela-
tionships that exist between the requirements, design outcomes and their design ra-
tionale [18]. That is, a requirement causes a design issue, therefore a decision must be
made to create or select a design to satisfy or resolve the design issue.

The seven conditions underpin the quality of a review and they are subtly related to
each other, further complicating their impacts on the review quality. First, we make a
fundamental assumption about the scope of a system as defined by the requirement
specification. We assume that the requirement statements are complete (condition 1)
but this can be proved to be wrong during architectural review if reviewers uncover
missing scenarios or find conflicting requirements (condition 2). The architectural
specification would need to demonstrate that the design can satisfy all the require-
ments (condition 3), and that there are no conflicting design elements (condition 4).
Often non-functional requirements such as performance and reliability are vaguely
specified or not quantified. A verifiable specification would describe explicitly how
these requirements can be fulfilled, for instance, a design component can process x
transactions per second to fulfill the requirement (condition 5). All key design deci-
sions must be justifiable. The justifications can be illustrated by what design options
have been considered, as well as documenting the design trade-offs, the pros and cons
that have been considered (condition 6). Finally, there must be enough details in the
design to demonstrate that indeed the design is implementable and further design de-
tails would not change the architecture design (condition 7).

3.3 The Benefits of ISAR Approach

The seven review conditions discussed in previous section are applicable to both de-
signers who prepare the architectural design specifications as well as to review teams
who use an ISAR approach. Besides establishing certain guidelines for the architec-
ture team to follow for supporting better software architecture review, they help to
create a software architecture quality assurance baseline. Such baseline can further
support quality assurance: (a) it supports independent quality assurance of the work
delivered by the software suppliers; (b) it provides a check and balance mechanism to
the architecture development team; (c) it assures the quality and the viability of the
architectural design before development and implementation thus preventing costly
rework; (d) it systematically measures the risks involved in the architectural design
through exploring design details.

An ISAR approach alleviates two major existing problems of architecture review,
namely, subjective interpretations of and lack of (or imprecise) information in archi-
tecture design. This can be achieved by identifying necessary information and condi-
tions that can enable an objective software architecture design evaluation. The ISAR
approach differs from existing evaluation techniques in a number of ways:

• Objective of review. ISAR approach focuses on verifying the technical feasibil-
ity and the requirements fulfillment of an architectural design. It does not review
other aspects such as project management issues [13] or skills and responsibili-
ties issues [6].

• Specification-based assessment. An engineering-style architectural design de-
scription would provide a better structured and more detailed specification than

 Towards Independent Software Architecture Review 311

the existing practice. Instead of questioning and interviewing architects, quality
assurance teams can rely on architectural description.

• Design rationale centric. ISAR approach requires software architects to justify
and document the design. Information such as design rationale, alternative de-
sign options and traceability of design to requirements allow the quality assur-
ance team to understand the design’s viability and justifications.

• Sufficiency of details. ISAR approach requires software architects to document
the architectural design to a sufficient level of details to prove the viability of
the design. Such details should be sufficient to a point where assumptions and
risks would not adversely affect the implementation of such a design.

• Less reliance on expert reviewers. Although knowledgeable architects are re-
quired to perform the review, the ISAR approach has less reliance on the exper-
tise of reviewers as existing architectural review techniques.

The ISAR approach would provide a more stringent review on the architectural de-
sign by strengthening the architectural design based on architectural descriptions. It
complements rather than replaces architectural evaluation techniques. Similar to
IV&V, ISAR approach has some drawbacks too. For example, the selection of the
review team may play a part in achieving objective evaluation because, in some cases,
bias may be introduced due to human factors such as past experience and prejudice.

4 The Next Step

In this paper, we suggest that the quality assurance function of existing software ar-
chitecture evaluation techniques is not independent of the architects who create the
design. However, a comprehensive quality assurance technique should be independent
of the architects. Thus, it should depend on the information in the design specification
as well as the review process. We posit that in order to improve the effectiveness of
quality assurance of architecture design, we must first consider a software architecture
design specification standard that meets the seven conditions. We suggest a number of
further research directions in software architecture specification and architectural
review:

• Meta-model(s) for documenting architecture design. Such meta-models are
used to guide the architects to better prepare architecture design documentation
for architecture evaluation. One issue of assessing the quality of architecture
specifications is a lack of assessment criteria. Although this is to some extent
addressed by having a standard such as IEEE 1471-2000 [1] for architectural de-
scription, a more detailed guideline from the perspective of quality assurance of
architectural specification would be advantageous. An architectural design
meta-model should encompass elements such as ASRs, design decisions, design
components and their interrelationships. The interrelationships between model
elements ought to provide traceability to allow reviewers to understand and as-
sess the architectural design.

• Quantifiable quality attributes. Quality attributes in design, e.g. performance,
should be specified in a verifiable way. This means the specification can show
how quality requirements can be achieved by each relevant design component.

312 A. Tang, F.-C. Kuo, and M.F. Lau

Often the design for such quality requirements is based on the judgments of ar-
chitects without objective justifications. Condition 5 suggests that engineering-
style specifications should be provided. This implies that standard templates and
guidelines need to be created to help architects gather the information for the
design specification.

• Specification of design rationale. Design rationale as an integral part of an ar-
chitectural design specification should contain enough details to justify the key
decisions of an architectural design. Architecture design is a set of design deci-
sions but often this tacit knowledge is undocumented. It makes independent ar-
chitectural review very difficult. To fulfill condition 6 and enable independent
architecture design review, the documentation of design rationale in architecture
specification needs to be improved.

• Software architectural knowledge and design pattern. Software architecture
design is a function of designers’ experience and knowledge that are inherently
subjective. So checking the fulfillment of conditions 6 and 7 can be difficult. If
architects claim to have fulfilled these conditions, how to verify these claims
become the tasks of the review team. The study of architectural knowledge and
architectural design patterns may provide support in this area, at least for similar
design problems that have been solved previously. Assessment of the soundness
of new design and its design reasoning could be based on previous design cases.
The similarities and differences when comparing their requirements, design
rationale and design outcomes can provide a baseline for reviewers.

In order to overcome subjective interpretation and insufficient or imprecise infor-
mation in architectural design evaluation, we need to find ways to improve and stan-
dardize software architecture description. Such research should attract attention from
the research community as well as from the software industry because of the impact
to software architecture design in the development life-cycle, especially when an im-
proved quality assurance process could potentially reduce the failures and the rework
costs in system and software development. We have received supports from organiza-
tions in Australia to carry out case studies into the areas of architectural specification
and architectural quality assurance process. We hope that the case studies would help
improve their current practices in these two areas.

References

1. IEEE: IEEE Recommended Practice for Architecture Description of Software-Intensive
System (IEEE Std 1471-2000). IEEE Computer Society, Los Alamitos (2000)

2. Perry, D.E., Wolf, A.L.: Foundation for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

3. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C., Morri-
son, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)

4. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods & Case
Studies. Addison-Wesley, Reading (2002)

5. Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE
Transactions on Software Engineering 28(7), 638–653 (2002)

 Towards Independent Software Architecture Review 313

6. Obbink, H., Kruchten, P., Kozaczynski, W., Postema, H., Ran, A., Dominick, L., Kazman,
R., Hilliard, R., Tracz, W., Kahane, E.: Software Architecture Review and Assessment
(SARA) Report (version 1.0) (2002)

7. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley,
Boston (2003)

8. Maranzano, J.F., Rozsypal, S.A., Zimmerman, G.H., Warnken, G.W., Wirth, P.E., Weiss,
D.M.: Architecture reviews: practice and experience. IEEE Software 22(2), 34–43 (2005)

9. Bengtsson, P., Bosch, J.: Scenario-based software architecture reengineering. In: Proceed-
ings of Fifth International Conference on Software Reuse, pp. 308–317 (1998)

10. Kazman, R., Asundi, J., Klein, M.: Quantifying the costs and benefits of architectural deci-
sions. In: Proceedings of the 23rd International Conference on Software Engineering
(ICSE 2001), pp. 297–306 (2001)

11. Al-Naeem, T., Gorton, I., Babar, M.A., Rabhi, F., Benatallah, B.: A quality-driven system-
atic approach for architecting distributed software applications. In: Proceedings. 27th In-
ternational Conference on Software Engineering (ICSE 2005), pp. 244–253 (2005)

12. Briand, L.C., Morasca, S., Basili, V.R.: Measuring and Assessing Maintainability at the
End of High Level Design. In: Proceedings of IEEE Conference in Software Maintenance,
pp. 88–97 (1993)

13. Avritzer, A., Weyuker, E.J.: Investigating Metrics for Architectural Assessment. In: Pro-
ceedings of the Fifth International Software Metrics Symposium, pp. 4–10 (1998)

14. Babar, M.A., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software
Architecture Evaluation Methods. In: Proceedings 2004 Australian Software Engineering
Conference, pp. 309–318 (2004)

15. IEEE: IEEE Standard for Software Verification and Validation (IEEE Std 1012 - 2004)
(2004)

16. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures: Views and Beyond. Addison-Wesley, Reading
(2002)

17. Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert 12(3), 78–85
(1997)

18. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design traceability and
reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 314–317, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Interplay of Aspects and Dynamic
Reconfiguration in a Specification-to-Deployment

Environment

Thais Batista1, Antônio T.A. Gomes2, Geoff Coulson3,
Christina Chavez4, and Alessandro Garcia3

1 Federal University of Rio Grande do Norte (UFRN) – Natal, RN, Brazil
2 National Laboratory for Scientific Computing (LNCC) – Petrópolis, RJ, Brazil

3 Lancaster University – Lancaster, UK
4 Federal University of Bahia (UFBA) – Salvador, BA, Brazil

thais@ufrnet.br, atagomes@lncc.br, geoff@comp.lancs.ac.uk,
flach@dcc.ufba.br, a.garcia@lancaster.ac.uk

Abstract. In this paper, we propose the application of concepts from aspect-
oriented software development to facilitate modular treatment of dynamic re-
configuration descriptions in specification-to-deployment environments. Our
strategy differs from earlier work in the area by blending aspects and architec-
ture abstractions simply and seamlessly through a special kind of connector —
called an aspectual connector — that encapsulates reconfiguration interactions.
More specifically, we propose an aspect-oriented specification-to-deployment
environment, called AO-Plastik, that uses our AspectualAcme ADL to specify
dynamic reconfiguration by means of aspectual connectors, and maps these
specifications onto a reflective component runtime platform.

Keywords: Dynamic reconfiguration, Aspect-oriented software development,
Architecture description language, Component-based software.

1 Introduction

There has recently been significant research [1,3,8] on dynamic reconfiguration in
environments that couple Architecture Description Languages (ADLs) with underly-
ing runtime environments in a systematic and integrated way—so-called “specifica-
tion-to-deployment” environments. Most of this research has proposed annotating
conventional ADL abstractions—components, connectors, etc.—with additional re-
configuration statements. Nevertheless, dynamic reconfiguration is a crosscutting
concern, and as such cannot be effectively modularized at the architecture level using
only conventional ADL abstractions. To enable a better modularized specification of
crosscutting concerns at the architecture level, Aspect-Oriented Software Develop-
ment (AOSD) [4] has received increasing attention from the software architecture
community. In spite of several Aspect-Oriented ADLs (AO-ADLs) being proposed
[3,5], few researchers have considered dynamic reconfiguration as a crosscutting
concern at the architecture level. Moreover, the approaches that do so have in
common the introduction of whole new sets of ADL abstractions—usually derived

 On the Interplay of Aspects and Dynamic Reconfiguration 315

directly from AO implementation techniques—which overburden architects used to
the conventional ADL abstractions.

In this paper, we propose an aspect-oriented specification-to-deployment environ-
ment called AO-Plastik, which builds on our previous work on the Plastik environ-
ment [8] and on the AspectualAcme ADL [5]. The first Plastik release supports
dynamic reconfiguration both at the architecture and runtime levels, which were caus-
ally connected. At the architecture level Plastik used the original Acme ADL [6] ex-
tended with reconfiguration statements such as ‘on-do’ clauses. In AO-Plastik, we
provide a more modular way of specifying such statements by employing Aspectu-
alAcme, a general-purpose ADL that extends the Acme’s metamodel with a special
kind of connector—an aspectual connector (AC)—for representing crosscutting inter-
actions. AC is used in AO-Plastik for encapsulating reconfiguration interactions. At
the runtime level Plastik employed the OpenCOM reflective component runtime [2]
extended with services such as configuration management, style enforcement, and
reconfiguration transactions and notifications. In the AO-Plastik environment, we add
to the configuration management service (CMS) a set of facilities for mapping aspec-
tual connector specifications onto OpenCOM reflective primitives.

2 AO-Plastik

2.1 The Architecture Level

AO-Plastik system specifications must follow an AOPlastikMF style in order to sup-
port the mapping of AO-Plastik architectural elements onto the runtime level. This
style packages one port type (BasePort) and one component type (BaseComponent).
An architectural rule is defined on instances of BaseComponent so that they are re-
quired to have one port of type BasePort.

Reconfiguration statements in AO-Plastik are always defined over ports of type
BasePort. The semantic of this port type is that it exposes the internal structure of its
enclosing component; therefore, any component on which architectural reconfigura-
tions may be effected must be an instance of BaseComponent. This is particularly
useful for representing reconfigurations on composite components. An Acme system
in AO-Plastik is regarded as a special case of outermost composite which implicitly
offers a port basePort (of type BasePort). Reconfiguration is always triggered by
conditions (specified by the on-do clause) occurring within an instance of BaseCom-
ponent (or the system itself). The aspectual connector encapsulates this reconfigura-
tion protocol by associating the conditions with actions specified in a (aspectual)
component to which this connector is attached through its crosscutting role. Such
actions—resembling ‘advices’ in AOSD parlance—are specified in AspectualAcme
through a new clause introduced by AO-Plastik: the ‘action’ clause.

Fig.1 illustrates the use of AOPlastik in the specification of a client-server system.
In this example, the aspectual connector ReconfConn has its base role attached to the
system’s implicit port basePort. The reconfiguration protocol in this connector, as
indicated in its glue clause, is responsible for triggering an action (changeServer) in
component Reconfigurer after the condition happens. As Fig.1 shows, two new func-
tions are also defined in AO-Plastik for handling architectural elements involved in a
reconfiguration protocol. The function BaseElement() is usually applied to the ‘on’

316 T. Batista et al.

part of the on-do clause. It receives as its only argument a base role and returns the
architectural element—either an instance of component type BaseComponent or a
system—to which this role is attached. The function AttachedPort() is usually applied
to the ‘do’ part of the on-do clause. It receives as its only argument a crosscutting role
and returns the port of the aspectual component to which this role is attached. This
port will be typically the place where the action clause will be defined. In Fig.1 the
port returned by AttachedPort() is used for triggering the action changeServer defined
in the changerPort port of the Reconfigurer component.

System ClientServer = new ClientServerFam, AOPlastikMF extended with {
 Component Client = new ClientT;
 Component PrimServer = new ServerT extended with {
 Property failure: boolean = false; }
 Connector Conn = { Role requestor; Role servicer; }
 AspectualConnector ReconfConn = {
 BaseRole triggerRole;
 CrosscuttingRole changerRole;
 Glue after = {
 On (exists cp: Component in BaseElement(triggerRole).Components |
 exists cn: Connector in BaseElement(triggerRole).Connectors |
 attached(cn, cp) and declaresType(cp, “ServerT”) and
 cp.failure == true)
 Do { AttachedPort(changerRole).changeServer(cp, cn); }
 }
 }//end of ReconfConn
 Component Reconfigurer = {
 Port changerPort = new ProvidedPort extended with {
 Action changeServer(cp: Component, cn: Connector) = {
 Detach cn.servicer from cp.service;
 Remove cp;
 Component BackupServer = new ServerT extended with {
 Dependencies { Attachments { cn.servicer to BackupServer.service; } } }
 }
 }
 } //end of Reconfigurer
 Attachments { Client.request to Conn.requestor;
 Conn.servicer to PrimServer.service;
 Reconfigurer.changerPort to ReconfConn.changerRole;
 ReconfConn.triggerRole to self.basePort; }
} //end of ClientServer

Fig. 1. A dependable client-server description in AO-Plastik

The modularization of reconfiguration statements into aspectual components—and
the separation between aspectual components and aspectual connectors that localize
the reconfiguration protocols—introduce an additional level of architectural flexibility
as they allow the same aspectual component to define reconfiguration statements that
may act over different systems, according to different conditions expressed in differ-
ent aspectual connectors. Thus, AO-Plastik promotes better modularized reconfigura-
tion specifications, and better reuse.

2.2 The Runtime Level

OpenCOM is originally a non-AO component runtime. A suite of AO extensions is
therefore needed to support the mapping from the AspectualAcme abstractions to this
runtime. We propose AO extensions that are compliant to the generic ‘AO middleware
reference architecture’ defined by the AOSD-Europe consortia [7]. In the reference

 On the Interplay of Aspects and Dynamic Reconfiguration 317

architecture, aspects and advices are roles played in a non-AO middleware by compo-
nents and interface operations, respectively. This is directly in line with the AO exten-
sions available in AspectualAcme, which implies that the mapping is therefore trivial.
The reference architecture also defines a new kind of binding, the AO binding, which
supports the composition between aspectual components and regular components, simi-
larly to aspectual connectors and attachments of AspectualAcme. In other words, aspec-
tual connectors and attachments are mapped to AO bindings.

The reference architecture also states that aspects in a non-AO middleware should
be provided by an aspect management functionality built on top of a reflective meta-
model layer. We added this functionality to the configuration management service
(CMS) in the original Plastik environment. In AO-Plastik, this service is also in
charge of parsing action clauses and attachments involving aspectual connectors and
inserting interceptors at the interfaces these attachments comprise. This allows CMS
to receive notifications from these interfaces, which can trigger reconfiguration ac-
tions. Since causality is kept in the mapping, AO-Plastik provides better alignment
between the architecture and runtime levels, thereby promoting on-line traceability.

3 Final Remarks

So far we have successfully trialed key aspects of AO-Plastik design, including the
runtime support and the parsing of AspectualAcme specifications. Some planned
future work includes: (i) handling conflicts or accommodating several reconfiguration
strategies in AO-Plastik systems by means of ‘precedence’ and ‘xor’ relationships [5]
between aspectual connectors and crosscutting ports, and (ii) packaging family-
oriented reconfiguration strategies that can promote an even higher level of reuse.

References

1. Batista, T., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in Component-
Based Systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 1–
17. Springer, Heidelberg (2005)

2. Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T.:
A Generic Component Model for Building Systems Software. ACM Transactions on Com-
puter Systems 26(1) (February 2008)

3. Costa, C., Ali, N., Pérez, J., Carsí, J.A., Ramos, I.: Dynamic Reconfiguration of Software
Architectures Through Aspects. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp.
279–283. Springer, Heidelberg (2007)

4. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development. Addi-
son-Wesley, Boston (2005)

5. Garcia, A., Chavez, C., Batista, T., Santanna, C., Kulesza, U., Rashid, A., Lucena, C.: On
the Modular Representation of Architectural Aspects. In: Gruhn, V., Oquendo, F. (eds.)
EWSA 2006. LNCS, vol. 4344, pp. 82–97. Springer, Heidelberg (2006)

6. Garlan, D., Monroe, R., Wile, D.: Acme: An Architecture Description Interchange Lan-
guage. In: CASCON 1997, Toronto, Canada, November 1997, pp. 169–183 (1997)

7. Greenwood, P., et al.: Validation of the Reference Architecture. AOSD-Europe Deliverable
D-68, Lancaster University, pp. 1–38 (March 2007)

8. Joolia, A., Batista, T., Coulson, G., Gomes, A.T.A.: Mapping ADL Specifications to an Ef-
ficient and Reconfigurable Runtime Component Platform. In: WICSA 2005, Pittsburgh,
USA (November 2005)

Extending the ANSI/SPARC Architecture

Database with Explicit Data Semantics: An
Ontology-Based Approach

Chimène Fankam, Stéphane Jean, Ladjel Bellatreche, and Yamine Aı̈t-Ameur

LISI/ENSMA and University of Poitiers - BP 40109, 86961 Futuroscope, France
{fankamc,jean,bellatreche,yamine}@ensma.fr

1 Introduction

The database (DB) design process follows the traditional ANSI/SPARC archi-
tecture proposed by Bachman [1]. A conceptual model (CM) is translated into a
logical model corresponding to a data specification implemented in a DB system.
The physical model defines how data are stored and accessed. External models
allow a DB designer to adapting data according to user’s requirements. Regard-
ing the semantic exploitation of data models, this architecture has two major
drawbacks [2]: (1) a strong dependency of models with designers and specific
application requirements; (2) a gap between conceptual and logical models that
increases with the discrepancy of the conceptual modelling languages.

The maintenance and/or evolution of the CM, that must be consensual when
dealing with semantic integration of data sources (semantics and schema con-
flicts), are in the kernel of these problems. Recently, some works give more im-
portance to CMs by materializing them in a DB [3]. In these works, the design of
a CM is preceded by the design or by pre-existence of ontology. In this case, both
ontology and data are represented in the DB. Such a DB is called an ontology-
based database (OBDB). Hence our proposition is to extend the ANSI/SPARC
architecture to support OBDBs.

2 Ontologies and Databases

This paper is based on our analysis of domain ontologies presented in [4]. On-
tologies can be combined into a layered model, called the Onion Model and
shown on Figure 1. Compared to DB requirements, (1) Conceptual Canonical
Ontologies (CCOs) can be considered as shared CMs. They may play the role of
a global schema in a DB integration architecture. (2) Non Conceptual Canonical
Ontologies (NCCOs) provide mechanisms similar to views in DBs; non canonical
concepts can be seen as virtual concepts defined from canonical concepts. These
mechanisms may be used to represent the mapping between different DBs. (3)
Linguistic Ontologies (LOs) may be used to localize similarities between DB
schemas [5], to document existing DBs or to improve the DB-user dialog.

With the increasingly amount of data represented as instances of ontology
classes (ontology-based data), a novel approach for processing these data in DBs,

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 318–321, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extending the ANSI/SPARC Architecture Database 319

LO

CCO

NCCO

Class Expression:

Description Logic

Property Expression:

Derivation Function

Property

Expression:

F-Logic
Other

 …

:

: operators to derive
LO concepts from CCO

or NCCO concepts

operators to derive

NCCO concepts from
CCO concepts

Fig. 1. The Onion Model of domain ontology

called Ontology-Based DataBases, emerges. An OBDB represents explicitly (1)
ontologies, (2) data structure or data schema, (3) data, and (4) links between
data and their schema and between data and the ontology. The ANSI/SPARC
architecture with its three levels (conceptual, logical and external levels) does
not support directly OBDB that introduces an additional data access level: the
ontological level integrating semantics of data in a DB. As a consequence, we
propose an extension of this architecture.

3 New Capabilities of the Proposed Architecture

Figure 2 shows our proposed extended architecture. The CM references the on-
tology using semantic links. It is defined using a subset of of the ontology that
fulfill the application requirements. Compared to the ANSI/SPARC architecture,
the proposed database architecture offers new capabilities.

Capabilities resulting from the Onion Model. Our proposed architecture intro-
duces a new level to separate the logical (structure) and the ontological (seman-
tics) representation of data.
Capability 1. The database management system (DBMS) allows to expressing
query at the ontological level independently of the logical representation of data.
Exploiting non canonical concepts of the NCCO layer is a new capability.
Capability 2. The DBMS supports the definition of non canonical concepts us-
ing canonical concepts of an ontology. Queries shall be expressed using canonical
and non canonical concepts.
For the LO layer, users shall be able to use terms in their own language.
Capability 3. The DBMS supports the definition and exploitation of linguistic
definitions of concepts that may be defined in different natural languages.
Another characteristic of our proposed architecture is to enforce upward com-
patibility with the ANSI/SPARC architecture which leads to other capabilities.

Capabilities for Preserving Compatibility with the ANSI/SPARC Architecture.
The SQL language is the standard defined to manipulate data. As a conse-
quence, compatibility with the SQL language is required.
Capability 4. The DBMS permits the manipulation of data at the logical level
preserving SQL compatibility.

320 C. Fankam et al.

Physical layer

Logical layer

Conceptual layer

Ontological layer

LO

NCCO

CCO

(A) Traditional ANSI database architecture (B) Proposed architecture

transformation

implementation
implementation

transformation

semantic links

Logical layer

Physical layer

Conceptual layer

Fig. 2. Proposed extension of ANSI/SPARC architecture

To optimize query processing at the ontological level, the DBMS shall provide
an access to the lower level, i.e., the conceptual level.
Capability 5. The DBMS handles access to data at the conceptual level from
the ontological level.

These capabilities have been implemented in the OBDB OntoDB2 introduced
in [6]. In particular, OntoDB2 supports the definition of non canonical concepts
(capability 2). To our knowledge, this feature is not available on most existing
OBDBs, it is described in next section.

4 Representation of Non Canonical Concepts

The non canonical concepts constructions permit a richer semantic expression
and characterization of the data stored in the DB. According to their origin,
these constructors can be grouped in three categories (1) constructors of de-
fined classes (Union, Intersection, Restriction) and properties (inverse, symmet-
ric, transitive). They come from Description Logic; (2) logical rules issues from
Frame Logic. They require a rule based reasoning engine to deduce new facts
from existing ones; (3) Algebraic expressions (e.g, diameter = 2*radius). They
come from the data processing community. They require an interpreter for alge-
braic expressions. Thus, a challenge is now to define a flexible OBDB architecture
allowing using these various constructors.
From a DB point of view, non canonical ontologies introduce redundancy re-
quiring specific treatments. The difficulty to have a kernel (non-deductive) DB
covering the Onion Model is increased. As a consequence, to design such a DBMS,
each level of the Onion Model must be managed specifically.

- Defined Classes. As stated before, non canonical classes (union, intersection,
restriction) instances will be computed using the view mechanism (with triggers)
that can be used to compute union, intersection or selection on a set of data.
- Algebraic Characteristics of Properties
(a) Symmetry: we propose to automatically materialize a posteriori all data.
(b) Transitivity: to avoid overhead due to transitive closure, we assume at the
beginning that all data are materialized. When a new relation concerning a

Extending the ANSI/SPARC Architecture Database 321

transitive property is added, the new facts are materialized by a trigger in a
non recursive manner. The trigger works as follows. When a new pair P(x,y) is
added, for each existing pair P(i,x) in the DB, a new pair P(i,y) is added.
- Algebraic Expressions. Like for defined classes, the value of a derived prop-
erty is computed by evaluating its expression (may be encapsulated by a view).

5 Conclusion and Future Work

In this paper, we have presented a new database architecture extending the
traditional ANSI/SPARC architecture with the semantic of data : the ontology
layer. Each concept references, by its unique identifier, the semantic definition
available in ontologies. The resulting DB is an ontology-based database (OBDB).
OBDBs support access to data at the knowledge level. They also provide help to
the DB designer by defining the conceptual model as a fragment of ontologies.
Notice that proceeding this way preserves an upward compatibility with the
traditional ANSI/SPARC architecture. Indeed, when references to the ontology
are omitted, we obtain the classical database architecture.

The developed architecture together with the associated exploitation language
OntoQL has been implemented in the OntoDB database. Some demos are avail-
able on http://www.plib.ensma.fr/plib/demos/ontodb/index.html.

As future work, we plan to extend this approach to other software architec-
tures and principally we intend to study how Architecture Description Languages
(ADL) can be extended with an ontological layer. We believe that this approach
scales up to other software architectures and helps to reduce the heterogeneity
of software architectures and software architecture models.

References

1. Bachman, C.W.: Summary of current work - ansi/x3/sparc/study group - database
systems, vol. 6, pp. 16–39 (1974)

2. Dehainsala, H., Pierra, G., Bellatreche, L., Aı̈t-Ameur, Y.: Conception de bases de
données á partir d’ontologies de domaine: Application aux bases de données du
domaine technique. In: Actes des 1ère Journées Francophones sur les Ontologies
(JFO 2007), pp. 215–230 (2007)

3. Sugumaran, V., Storey, V.C.: The role of domain ontologies in database design: An
ontology management and conceptual modeling environment. ACM Transactions on
Database Systems (TODS) 31(3), 1064–1094 (2006)

4. Jean, S., Pierra, G., Aı̈t-Ameur, Y.: Domain Ontologies: a Database-Oriented Anal-
ysis. In: Filipe, J., Cordeiro, J., Pedrosa, V. (eds.) WEBIST 2005 and WEBIST
2006. LNBIP, vol. 1, pp. 238–254. Springer, Heidelberg (2007)

5. Beneventano, D., Bergamaschi, S., Castano, S., Corni, A., Guidetti, R., Malvezzi,
G., Melchiori, M., Vincini, M.: Information integration: The momis project demon-
stration. In: Proceedings of 26th International Conference on Very Large Data Bases
(VLDB 2000), pp. 611–614. Morgan Kaufmann, San Francisco (2000)

6. Fankam, C.: OntoDB2: Support of Multiple Ontology Models within Ontology. In:
Proceedings of the EDBT 2008 PhD Workshop. Co-located with the 11th Interna-
tional Conference on Extending Database Technology (EDBT 2008) (2008)

http://www.plib.ensma.fr/plib/demos/ontodb/index.html

Search-Based Extraction of Component-Based
Architecture from Object-Oriented Systems

Sylvain Chardigny1, Abdelhak Seriai1,
Mourad Oussalah2, and Dalila Tamzalit2

1 Ecole des Mines de Douai, 941 rue Charles Bourseul, 59508 Douai France
2 LINA, university of Nantes, 2 rue de la Houssinière, 44322 Nantes France

Abstract. Software architecture modeling and representation are a main
phase of the development process of complex systems. In fact, software ar-
chitecture representation provides many advantages during all phases of
software life cycle. Nevertheless, for many systems, like legacy or eroded
ones, there is no available representation of their architectures. In order to
benefit from this representation, we propose an approach called ROMAN-
TIC which focuses on extracting a component-based architecture of an ex-
isting object-oriented system. This approach considers this problem as a
balancing problem of competing constraints which aims to select the best
solution among all the possible architectures. Consequently, we present in
this paper the identified constraints of this problem and its formulation as
a search-based problem.

1 Introduction and Motivation

A representation of the system software architecture provides many advantages
during the software life cycle [1]. Indeed a component-based software architec-
ture is a high level abstraction of a system using the architectural elements:
components which describe functional computing, connectors which describe in-
teractions and configuration which represents the topology of connections be-
tween components. This distinction makes easier the understanding of a system.
This comprehension is crucial during the maintenance and evolution phases, to
localize software defects and to reduce the risk of misplacing new system func-
tionality. Moreover a component-based architecture is also useful in order to
facilitate the reuse of some system parts represented as components.

However most existing systems do not have a reliable architecture represen-
tation. Indeed these systems could have been designed without an architecture
design phase, as it is the case for most legacy systems. In other systems, the
available representation can diverge from the system implementation. This di-
vergence, between the representation and the reality of the system is the result
of the erosion phenomenon. This appears, first, during the implementation phase
due to gaps between the expected architecture and the implemented one. These
gaps become greater because of lack of synchronization between software docu-
mentation and implementation.

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 322–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Search-Based Extraction of Component-Based Architecture 323

Taking into account the previous considerations, several approaches of ar-
chitecture extraction are proposed and can be classified according to their au-
tomation level. Firstly some approaches are quasi manual. For example, Focus [2]
proposes a guideline to a hybrid process which regroups system classes and maps
the extracted entities to an conceptual architecture obtained from an architec-
tural style according to the human expertise. Secondly most approaches propose
semi or quasi-automatic techniques. These approaches automate repetitive as-
pects of the extraction process [3] or use search-based algorithms to identified
modules in the system [4]. These last avoid the need for human expertise which is
costly and not always available but they fail to extract some dependencies which
can be detected by experts. Finally the output of most of existing architecture
extraction approaches is most of time a module view of a system instead of a
real component-based software architecture.

Based on these statements, the need for a quasi-automatic extraction approach
which avoid the limits of previous ones is clear. Consequently, we propose an
approach called ROMANTIC1 which focuses on extracting a component-based
architecture which reflects truly the implementation of the initial object-oriented
system. ROMANTIC is a quasi-automatic extraction approach which decreases
the need for human expertise and uses all the class dependencies. To achieve this
goal, we consider the extraction problem as a balancing problem of competing
constraints, as for example the architectural quality or the hardware architecture.
To solve this balancing constraint problem, we formulate it as a search-based
problem where the problem constraints drive a search in the space of all possible
architectures. This choice is motivated by the recent works on the search-based
engineering showing that these techniques are very effective to solve this kind
of problems [5]. To define the extraction problem as a search-based problem,
we present, in this paper the definition of the two required elements: the search
space which is the set of all the solutions of the problem; the fitness function
which is used to measure the fitness of the explored solutions in the search space
and to select the best solution.

The remainder of the paper is structured as follows. Our definition of the
search-space of the extraction problem is introduced in the section 2. Section 3
defines the constraints of the extraction problem and presents how they drive
the process through the fitness function and a reduction of the search space.
Conclusion and future work are given in Section 4.

2 Definition of the Search-Space

Architecture extraction is the reverse process of the design one. Indeed the ex-
traction process uses existing implementation code and the architect’s skills to
obtain a system abstraction and determine architectural elements : components
which describe functional computing, connectors which describe interactions and
configuration which represents the topology of connections between components.
1 ROMANTIC: Re-engineering of Object-oriented systeMs by Architecture extractioN

and migraTIon to Component based ones.

324 S. Chardigny et al.

Consequently, extracting an architecture from an object-oriented system consists
of finding a correspondence between object-oriented programming concepts (i.e.
classes, interfaces, packages, etc.) and architectural ones (i.e. components, con-
nectors, interfaces, etc.).

Fig. 1. Object-component cor-
respondence

Fig. 2. Our model of object-component correspon-
dence

This correspondence model defines an architecture as a partition of the system
classes. Each element of this partition represents a component. These elements
are named “shape” and contain classes which can belong to different object-
oriented packages (cf. Fig.1). Each shape is composed of two sets of classes: the
“shape interface” which is the set of classes which have a link with some classes
from the outside of the shape, e.g. a method call to the outside; and the “center”
which is the remainder of shape. As shown in Fig.2, we assimilate component
interface set to “shape interface” and component to shape.

Consequently the search-space of our search-based problem is composed of all
partitions of the system classes. This means that, in a system which contains n
classes, the search-space contains O (n!) possible architectures.

3 Guides of the Architecture Extraction Process

In addition to the search-space we need to define the guides which drive our
search in this space. Thus we identify several elements which can be classified
into two groups according to the way they can influence the search-based process.

On the one hand, two elements can be used to define the fitness function. The
semantic properties define what is an architecture whereas the quality properties
define what is a good architecture. Consequently we propose to reify the most
commonly admitted semantic and quality properties of an architecture to define

Search-Based Extraction of Component-Based Architecture 325

the fitness function. Thus our fitness function, defined using these two guides,
measures the quality and the semantic correctness of the architecture.

On the other hand, we use other elements as guides to drive our process. In
fact available design documents (e.g use-case diagrams) and the recommenda-
tions of the architect can be used to guide the extraction process. They allow
us to modify the results according to existing functionalities of the system, for
example, by rejecting a solution according to the recommended number of com-
ponents. Finally as deployment constraints can affect the system architecture
design, we use hardware architecture properties to guide the extraction process
in order to obtain an architecture which is adapted to it.

4 Conclusion

We present, in this paper, a modelization of the architecture extraction problem
as a search-based one. Then we propose to define the extraction of a component-
based architecture from an object-oriented system as a search in the space of
all possible system architectures. This search-space is defined according to our
correspondence model as the space of all the partitions of the system classes. We
present too the constraints of the extraction problem that we have identified. We
use these constraints as guides in order to drive our process as a fitness function
or to reduce the search-space.

This use of the extraction problem constraints as guides of our process is
our main difference with existing works on architecture extraction. For example
our fitness function is defined by a refinement of the commonly used definitions
of components into semantic characteristics and measurement models whereas
others works use the expertise of the authors in order to define rules driving the
process.

We have already defined a fitness function, according the semantic and qual-
ity guides, which aims to identify the components. Then we have used the doc-
umentation to reduce the search space. Consequently, our future works are the
connector identification and the use of the deployment constraints.

References

1. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline.
Prentice-Hall, USA (1996)

2. Medvidovic, N., Jakobac, V.: Using software evolution to focus architectural recov-
ery. Automated Software Engineering 13, 225–256 (2006)

3. Harris, D.R., Reubenstein, H.B., Yeh, A.S.: Reverse engineering to the architectural
level. In: Proc. of ICSE, pp. 186–195. ACM, New York (1995)

4. Mancoridis, S., Mitchell, B.S., Chen, Y.-F., Gansner, E.R.: Bunch: A clustering tool
for the recovery and maintenance of software system structures. In: ICSM, p. 50
(1999)

5. Harman, M.: The current state and future of search based software engineering. In:
Future of Software Engineering, pp. 342–357. IEEE, Los Alamitos (2007)

A Security Model for Internet-Based

Digital Asset Management Systems�

I. Chatzigiannakis, V. Liagkou, D. Salouros, and P. Spirakis

Research and Academic Computer Technology Institute
N. Kazantzaki, University of Patras, 26500, Rio, Patras, Greece

Department of Computer Engineering and Informatics,
University of Patras, 26500, Rio, Patras, Greece
{ichatz,liagkou,salouros,spirakis}@cti.gr

Abstract. Usage and exploitation of the Internet is a critical requirement
for managing and distributing valuable digital assets. This requirement in-
troduces a great number of threats for commercial (or not) organizations
thatmay cause hugedata andfinancial losses, harm their reputation aswell
as people’s trust on them. In this paper we present the research challenges
for secure digital assetmanagement over thewebbyproposing amodel that
provides data safety and secure user interaction on especially demanding
on-line collaboration environments.

1 Introduction

Nowadays, rich-media organizations tend to produce, manage, present, exchange,
organize, store and distribute their material over the web. However, Internet in-
creases the vulnerability of digital content commercial (or not) exploitation since
it is a possibly hostile environment for secure data management. The relation
between content (digital files) and the proper intellectual property rights (IPR)
for use and manage it, results in digital assets, as concluded in (1). Copies of
digital assets, usually of lower quality, that carry copyright information in order
to secure IPR on the originals are referred to as proxies. An information sys-
tem that manages digital assets is called a Digital Asset Management System
(DAMS). From a comprehensive summary of (2, 3, 4), a DAMS performs ad-
ministrative functions on assets such as: ingest, categorize, store and retrieve,
workflow control, manage IPR, preview and search, repurpose, encode and trans-
form, preserve and destruct, and, finally, distribute on web portals, broadcasting
stations, streaming services and collaborative environments.

2 Research Challenges on DAMS

Till now, a large number of commercial and open-source DAMS platforms, has
been developed. (2) gives a classification according to market and commercial
� Partially supported by the IST Programme of the European Union under contact

number IST-2005-15964 (AEOLUS).

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 326–329, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Security Model for Internet-Based Digital Asset Management Systems 327

demands (desktop, workgroup/collaborative, mid-range, pay-as-you-go and en-
terprise systems). (4) present a system for online learning and asset dissemination
to researchers, students or even the general public. (5) describes a detailed top-
down system architecture based on selected software and hardware technologies.
Today, modern rich-media enterprises seek ways to effectively manage their digi-
tal material using Internet-based DAMS. Such systems provide advantages such
as: (i) data management can be performed in a distributed fashion by utilizing
different servers across a network. (ii) users activate system applications even if
they are far away from the system infrastructure. (iii) commercial exploitation of
digital assets opens to an endless list of possible consumers. (iv) uninterruptible
availability on system data and applications can be achieved. (v) system soft-
ware/hardware can be separated into autonomous modules (multi-tier scheme)
in order to handle more resource needs and increasing numbers of users.

The vast majority of today’s DAMS platforms are not relied upon a unify-
ing model that can sustain a well defined security level. Their development is
primarily based on the requirements of specific application domains and they
usually need to co-operate with external systems such as Digital Rights Man-
agement, watermark platforms, etc. But even then, there are still open security
problems concerning privilege and IPR assignment, licensing policies and safe ac-
cess to assets, etc. The demand of expertised staff and the adoption of particular
software/hardware solutions are extra disadvantages.

2.1 Security Challenges and Requirements

Despite the advantages, Internet is vulnerable to various threats coming from
cyber criminals, hackers, unprincipled authorities, etc. We summarize the most
common threats in terms of our application domain:

1. Unauthorized access : an Internet user pretends to be a system user and
illegally gains access to system data or applications.

2. Unprivileged activity: a user of a certain group illegitimately acquires privi-
leges of other groups and proceeds to prohibitive actions.

3. Repudiation: a user denies an action that caused a potential damage and the
system cannot trace him back.

4. Illicit interference with transferred data: packet sniffing, modification or dele-
tion is possible when an unscrupulous entity gains access to a communication
channel.

5. Manipulations on stored content : an entity tampers with and forges valuable
assets and illegally downloads or distributes them on the net.

6. Virus spreading: generation and propagation of malicious programs (i.e.
viruses, worms, etc.) and other hacking techniques (like denial of service
attacks) over the web may infect computers, lower performance, stop system
operation, delete and steal confidential data, etc.

Our research direction necessitates a very careful consideration of all possible
security challenges. Below, we list our resulted security requirements and give

328 I. Chatzigiannakis et al.

certain design directives in order to eliminate the threats and increase people’s
trust on the provided system services.

1. Confidentiality: leakage of critical information to unauthorized single users or
entire user groups is unacceptable. Confidentiality can be achieved through
VPN networks, watermarking techniques and effective privileges and IPR
management.

2. Integrity: no unauthorized changes should be made on stored and transferred
data. Data integrity can be achieved through computating hash and MAC
functions.

3. State stamping : an IPR enforced asset locks into a state and no modifications
are possible without detection. State stamping can be achieved by utilizing
electronic fingerprints and checking hash values.

4. Availability: system data and applications should be available anytime by
any authorized user. Availability can be achieved through central failover
clusters that perform data path replication and load balancing when needed.

5. Accountability: unauthorized access, modification or illegal distribution on
media files should be detected and, possibly, traced to specific sources. Ac-
countability can be achieved using electronic signing, commitment and dig-
ital watermarking.

6. Robustness : the system should be shielded against all possible Internet at-
tacks and threats. Robustness can be achieved through the placement of
hardware firewalls, with automatically updated antivirus software, and phys-
ical protection to confront natural disasters.

3 Our Proposed DAMS Architecture

We can imagine our Internet-based DAMS as a large data repository that pro-
vides specific web applications for handling and distributing digital assets over
the web. The system is based on an architectural model that was designed ac-
cording to the previously discussed requirements. It follows the open-source idea
in order to be software/hardware platform independent, lower development and
maintenance costs and adapt easier in broader management infrastructures or
to future changes.

More specifically, in our model users are separated into distinct groups of spe-
cific privileges and discrete roles. A distributed architecture based on median
servers connected with a central server farm of failover clusters offers scalabil-
ity and high-availability. Servers follow a multi-tier scheme to achieve modular
organization and flexible adaptation to environmental or future changes. A dis-
ciplinary workflow mechanism introduces interdependencies between user tasks
and data. Network technologies such as VPN networks, a hierarchical Public
Key Infrastructure (PKI) and hardware firewalls guarantee integrity and con-
fidentiality on transferred data. Cryptographic techniques such as bit commit-
ments, electronic fingerprints and signing, computing hash and MAC functions
as well as watermarking methods and effective IPR enforcements are utilized in
order to prevent potential counterfeiting and unauthorized use of digital files and

A Security Model for Internet-Based Digital Asset Management Systems 329

other administrative information. Especially for IPR enforced assets, the system
checks hash values so that no system user or Internet attacker is able to modify
them without detection (state stamping).

We are currently developing a prototype for our model that will serve as a
reference implementation. In particular, we wish to examine the security levels
achieved as well as the scalability of the system to large number of user re-
quests. We also plan to examine alternative techniques and cryptographic tools
for achieving a more advanced security level and also investigate the trade-offs
between security and overall performance in large scale environments.

References

1. Austerberry, D.: Digital Asset Management - How to realise the value of video
and image libraries. Focal Press/Elsevier Ltd (2004)

2. Frey, F., Williams-Allen, S., Vogl, H., Chandra, L.: Digital Asset Management
- A Closer Look at the Literature, Printing Industry Center (March 2005)
(Technical Report No. PICRM-2004-08),
http://www.edsf.org/img/picrm200408.pdf

3. Geser, G., et al.: Digital Asset Management Systems for the Cultural and Sci-
entific Heritage Sector. DigiCULT Project (IST-2001-34898), Thematic Issue
2 (December 2002)

4. Walter, M.: Architectural Considerations in Digital Asset Management, The
Gilbane Report (October 2004),
http://www.ancept.com/talks/GilbaneWP AnceptIBM 1.0.pdf

5. Digital Asset Management (DAM) Infrastructure Reference Architecture, v.
1.0, Sun Microsystems, Artesia Technologies (February 2003)

http://www.edsf.org/img/picrm200408.pdf
http://www.ancept.com/talks/GilbaneWP_AnceptIBM_1.0.pdf

A Large Scope Transformational Approach for

Distributed Architecture Design

Fabian Gilson, Vincent Englebert, and Raimundas Matulevičius

University of Namur
Faculty of Computer Science

PRECISE Research Center in Information Systems Engineering
{fgi,ven,rma}@info.fundp.ac.be

Abstract. Many Architecture Description Languages (ADLs) appeared
in order to model complex software solutions. Unfortunately, current
modeling approaches do not take into account infrastructure related
constraints and do not add non-functional requirements to architecture
constructs. This paper describes a transformation-oriented method to
design distributed software architectures. Our method is based on an
ADL named IODASS. It uses semantically extensible building blocks
with qualitative attributes that specify non-functional or infrastructure
related requirements.

1 Introduction

With the growth in size and complexity of distributed information systems, many
new architecture description languages (ADLs) are proposed. However, some are
error-prone (e.g. Wrigth [1]) and others are difficult to use (e.g. Archware [2]).
Elsewhere, we also saw the emergence of domain specific modeling (DSM) that
aims building domain specific languages (DSL) in order to create specific so-
lutions [3]. But, DSLs are by definition poorly reusable. Further, some works
show the need of using model transformations to refine high-level solutions into
more detailed ones [4] [5]. This eases the understanding and the manipulation
of the model. In this paper we investigate how to model distributed information
systems with their non-functional requirements (NFRs) and infrastructure con-
straints. To this purpose, we define a transformation-oriented design method to
create distributed architectures. The method is called Define-Assemble-Deploy
(DAD) and uses an ADL, named Infrastructure-Oriented Dynamic Architecture
with Subsitutable Semantics (IODASS). It allows designers to specify component
types with the required or provided services and to refine the construct seman-
tics with qualitative attributes. These attributes are used to build and apply
transformations on the architecture in order to implement them. Every archi-
tecture model is then mapped onto the target infrastructure to identify possible
deployment problems.

In Section 2, we present the related work. In Section 3, we introduce IODASS.
Next, in Section 4 we describe the DAD method. Finally, in Section 5, we con-
clude and present the future work.

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 330–333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Large Scope Transformational Approach 331

2 Related Work

As discussed in [6], a set of ADLs does not integrate NFRs to the architecture
itself. More recent approaches addressed these requirements, but they focused on
particular type of NFRs (e.g. Quality of Services [7]). In our proposal, we intend
to cover a wider range of NFRs including infrastructure-related constraints.

In [5], Bosch and Molin describe a method to evaluate architectures against
their non-functional requirements. However, this is performed at the end of the
development process. In our approach, we want to integrate the NFRs from the
first architecture model and validate them at each refinement step.

Recent works focused on running system architectures and their evolution
(like, Archware [2] and Plastik [8]). The method presented in this paper focuses
on design phase only.

3 IODASS Language

We defined an ADL called Infrastructure Oriented Dynamic Architecture with
Substitutable Semantics (IODASS) [9]. IODASS models describe architectures of
distributed information systems. Quality attributes expressing NFRs are defined
inside most of IODASS constructs (see Caption of Fig. 1). A ComponentType
classifies SetOfInstances into types and both can be hierarchically organised.
They share the same quality attributes and expose the same Facets. A Facet
is a set of logically grouped services, called Features. ComponentTypes are con-
nected together via ConnectorTypes and SetsOfInstances via Connectors through
a required-provided Contract. PhysicalNodes define the infrastructure elements
used for the deployment, such as computers, cables, etc.

IODASS semantics is defined with a minimum of hypotheses. It can be seen
as a naive semantics. We let the designer refining the construct semantics with
the characteristics specific to an environment. For that reason, the language
is defined as a framework where the constructs definition can be refined. The
quality attributes express non-functional requirements or properties. A require-
ment describes a quality that a construct must have and a property describes
a quality that a construct has. These requirements can be used to trigger model
transformations and the architecture can be validated against its properties.

4 DAD Method

The Define-Assemble-Deploy method uses IODASS to design distributed IS ar-
chitectures. To illustrate it, we define a simplified client-server system (Fig. 1).

Our model is divided in three parts: Definition, Assemblance and Deployment.
First, designers define the types of constructs the architecture uses (Fig. 1 a).
Our example counts three construct types: a Client, a Server and a Connector.
The building blocks are extended with attributes. In the example, the Server
type must handle a client request in less than 60 seconds. These component
types are connected under a given contract binding a required and a provided

332 F. Gilson, V. Englebert, and R. Matulevičius

Fig. 1. First architecture of the Client-Server system

facet. The contract also specifies the Connector type used by the components
and is constrained by a set of NFRs. In Fig. 1 a, the connection bandwith must
be at least 5Mb/s. The second step is the Assemblance (Fig. 1 b). We instanti-
ate the component types. Here, the server instance must be replicated, thus we
decide to instantiate it twice and we arbitrary book 13 other available slots. The
SetsOfInstances are then connected using the template given at the Definition
level. Finally, the logical blocks are mapped to the physical infrastructure in the
Deployment part (Fig. 1 c). We check the compliance using two techniques: qual-
ity attributes and specification of the component types. Quality attributes can
express performance properties needed by a component and offered by a concrete
node. The component specification is mainly used to validate the compliance be-
tween the model connections and the infrastructure links. In the example, the
concrete medium used to connect the components must support the given min-
imum bandwith and the IP communication protocol.

After we have defined our model using IODASS, we can apply transformations
to refine it or to resolve an attribute. A refinement is a transformation that
hierarchically decomposes a component (or a component type). An attribute
resolution can be more intrusive and modifies the component’s inner processes.
An example is presented in [10] where a security requirement is implemented
into a cypher component. In [11] [12], design decisions constitute an important
part of the design process, so we plan to apply a goal-oriented approach like [13]
[14], to keep traceability in order to justify the alternative solutions.

5 Conclusion and Future Work

In this paper, we present IODASS, an ADL that uses quality attributes to specify
non-functional requirements on architectural constructs. The language is the
basis of a transformation-oriented method, called Define-Assemble-Deploy. Our
approach closely relates the software architecture to its target infrastructure and
validates it against the physical constraints during the whole design process.
It also uses extensible component semantics in order to refine the construct

A Large Scope Transformational Approach 333

definition. In the future, we will design a case study to validate our suggestions.
We will develop the attributes list and build tools supporting the DAD method.

Acknowledgment. This work is partially funded by the Interuniversity At-
traction Poles Programme, Belgian State, Belgian Science Policy.

References

1. Allen, R.: A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, Issued as CMU Technical Report CMU-CS-
97-144 (January 1997)

2. Morrison, R., Kirby, G., Balasubramaniam, D., Mickan, K., Oquendo, F., Ĉımpan,
S., Warboys, B., Snowdon, B., Greenwood, R.: Constructing Active Architectures
in the ArchWare ADL (2003)

3. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Press (March 2008)

4. Khriss, I., Keller, R.K., Hamid, I.A.: Supporting Design by Pattern-based Transfor-
mations. In: Second International Workshop on Strategic Knowledge and Concept
Formation

5. Bosch, J., Molin, P.: Software Architecture Design: Evaluation and Transformation,
pp. 4–10. IEEE Computer Society, Los Alamitos (1999)

6. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

7. Röttger, S., Zschaler, S.: Model-Driven Development for Non-functional Properties:
Refinement Through Model Transformation. In: Baar, T., Strohmeier, A., Moreira,
A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 275–289. Springer, Heidel-
berg (2004)

8. Joolia, A., Batista, T.V., Coulson, G., Gomes, A.T.A.: Mapping ADL Specifi-
cations to an Efficient and Reconfigurable Runtime Component Platform. In:
WICSA, pp. 131–140 (2005)

9. Gilson, F., Englebert, V.: IODASS Overview: Technical Report, University of Na-
mur, Faculty of Computer Science (2008), http://www.info.fundp.ac.be/fgi/
pub/iodass/tech-report iodass-overview 1.0.pdf

10. Englebert, V., Vermaut, F.: Attribute-Based Refinement of Software Architectures.
In: Proc. of the 4th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2004), p. 301 (2004)

11. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Deci-
sions. In: Proc. of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2005), Washington, DC, USA, pp. 109–120. IEEE Computer Society, Los
Alamitos (2005)

12. Ernst, N.A., Mylopoulos, J.: Tracing Software Evolution History with Design
Goals. In: Third International IEEE Workshop on Software Evolvability, 2007,
pp. 36–41 (2007)

13. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering. In: Proc. of the 3rd IEEE International Symposium on Requirements
Engineering (RE 1997), Washington, DC, USA, p. 226. IEEE Computer Society,
Los Alamitos (1997)

14. van Lamsweerde, A.: From System Goals to Software Architecture. In: Formal
Methods for Software Architectures, pp. 25–43 (2003)

http://www.info.fundp.ac.be/fgi/pub/iodass/tech-report_iodass-overview_1.0.pdf
http://www.info.fundp.ac.be/fgi/pub/iodass/tech-report_iodass-overview_1.0.pdf

Towards a Software Process for Aspect-Oriented

Modeling of Quality Attributes�

Mónica Pinto and Lidia Fuentes

Dept. Lenguajes y Ciencias de la Computación, University of Málaga, Spain
{pinto,lff}@lcc.uma.es
http://caosd.lcc.uma.es

Abstract. This paper defines a process for the aspect-oriented modeling
of quality attributes, especially those with high functional implications.
The goal of this process is to produce ”built-in” reusable and parame-
terizable architectural solutions for each quality attribute. We propose
using the AO-ADL Tool Suite to specify and store these solutions.

1 Introduction

Modeling a Quality Attribute (QA) is not a straightforward task (1). They are
usually complex enough to be decomposed into a set of concerns, with dependen-
cies and interactions among them. This is especially true for those QAs which
have major implications on the core functionality of applications. Thus, there
are nowadays several proposals suggesting that QAs with strong implications on
the application core should be incorporated into the architecture as functional
concerns (2, 3, 4). However, these approaches have two important shortcomings.

The first is that existing solutions do not usually take into account the cross-
cutting nature of the functional concerns of a QA. Such concerns may be tangled,
i.e., several concerns may be encapsulated in the same software artifact, or they
may be scattered, i.e., the same concern split across different software artifacts,
within the core functionality of the system. In this paper we propose to cope with
this shortcoming using Aspect-Oriented Software Development (AOSD), which
focuses on identifying, modeling and composing crosscutting concerns through-
out the software life cycle. Specifically, we propose the definition of a software
process to identify and specify built-in aspect-oriented architectural patterns.

The second shortcoming is that QA patterns are mainly specified by filling in a
table with the architectural implications (4), or by means of textual descriptions
of intricate scenarios (5). Thus, a ready-to-use solution that the software architect
can (re)use in different applications is not provided. In order to cope with this lim-
itation we propose the use of an AO architectural language with support to store
the specified models in a repository for later instantiation and reuse. Specifically,
we propose the use of AO-ADL (6) and the AO-ADL Tool Suite.

After this introduction, section 2 outlines the motivation for our approach,
section 3 describes the software process, section 4 the support provided by the
AO-ADL Tool Suite and section 5 our conclusions.
� Supported by AOSD-Europe project IST-2-004349 and AMPLE Project IST-033710.

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 334–337, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a Software Process for Aspect-Oriented Modeling of QAs 335

2 Motivation and Related Work

We have studied several non-AO and AO taxonomies of QAs with functional
implications (2, 5, 7, 8) that are complex enough to be decomposed into a
set of related concerns and sub-concerns. For instance, usability is decomposed
into the feedback, validation and contextual help concerns among others. These
taxonomies suggest that it is not possible to reason about many QAs at the
architectural level without adding attribute-specific functionalities to the core
application. Moreover, they reveal that it is crucial to start from an accurate
and complete taxonomy of concerns modeling a particular QA (2, 7).

Another important issue is that the same concerns are normally shared by
several QAs and their modeling is usually repeated for each framework. For
instance, fault-tolerance is modeled as a concern of the usability attribute in (2)
and of the security attribute in (5). The goal would be to associate a concern to
the most suitable QAs and then identify the dependencies created among QA.
For instance, there is a dependency between the usability and the security QAs
because a user needs to be authenticated in order to provide contextual help.

Finally, the format used for presenting architectural solutions does not help to
understand the peculiarities of each concern. Details regarding the different al-
ternatives satisfying a particular concern, dependencies with other concerns and
about constraints that a QA imposes on the core application and the impossi-
bility of defining completely reusable architectural solutions for some concerns
are not well-documented from early stages of the development.

The primary aim of our process is to cope with these shortcomings.

3 A Process for AO Modeling of Quality Attributes

The most important contribution of the process defined in this section is that
it makes explicit the multiple considerations that need to be taken into account
and highlights important information and decisions that need to be considered
and documented for later (re)use of the architectural solutions.

The two first steps of our process (Figure 1) are: (1) selecting an existing
taxonomy of concerns or defining a new one (activity ’Reuse/Define Taxonomy of
Concerns’), and (2) deciding if the QA is suitable or not to be modeled following
our approach, depending on whether or not the attribute has important func-
tional implications, and on the number of concerns with a crosscutting nature.

The third step consists of modeling each concern in the QA (structured ac-
tivity ’Model the Concern’). The internal workflow of this activity is: (1) Identify
existing AO and non-AO solutions to avoid modeling a concern from scratch (ac-
tivity ’Identify Existing Solutions to Address the Concern’); (2) Identify the architec-
tural implications of the concern in order to identify the main functionalities to
be modeled at the architectural level (activity ’Identify Architectural Implications’),
(3) Identify the tangled (activity ’Identify Tangled Behavior’) and scattered (activity
’Identify Scattered Behavior’) behaviors, (4) Identify an architectural solution (notice
that more than one is possible), and (5) Model the identified architectural solution

336 M. Pinto and L. Fuentes

<<structured>>

Model the Concern

<<structured>>

Model the Architectural Solution

Model Parameterizable
Solution

other QA

Identify Dependencies
with other

Quality Attributes

Extend Model with
core Application

Constraints

Model Reusable
Solution

other QA

Store in the
RepositoryArch Solution

Documentation
Table

Reusable Solution
is possible?

Identify Existing
Solutions to Address

the Concern

non−AO solutionsAO solutions

Identify
Scattered
Behaviour

Identify An
Architectural

Solution

Concern
Documentation

Table

Identify
Architectural
Implications

Identify
Tangled

Behaviour

Are there more
solutions?

Reuse/Define
Taxonomy of Concernstaxonomy

<<datastore>>

AO Architectural
Repository

Quality
Attribute

Documentation
Table

Documentation Select a
concern

Are there an important number of concerns
with functional implications

Are there an important number of
crosscutting concerns?

Are there more concerns?

Yes

No

No

Yes

No

No

NoYes

Yes

Yes

Fig. 1. Activity Diagram of the AO Modeling Process

(structured activity ’Model the Architectural Solution’ described below). This infor-
mation is documented in the (’Concern Documentation Table’).

Modeling a particular architectural solution implies that the dependencies with
concerns in other QAs need to be identified and conveniently modeled to avoid
repeating the same concerns in different quality models (activity ’Identify Depen-
dencies with other quality attributes’). With this information the software architect is
ready to decide wether a reusable or a parameterizable solution should be mod-
eled. A Reusable Solution is one in which the concerns can be modeled completely
independently of the behaviors of the core functionality. A Parameterizable Solu-
tion is one in which the behavior of the concern has to be adapted to each par-
ticular application and thus the sub-architecture modeling the concern has to be
seen as a template that must be instantiated before it can be used in a particu-
lar application architecture. Independently of the kind of solution used, adding
one to an existing architecture may require that this architecture satisfies certain
constraints (e.g. expose their components’ state). These constraints should also
be modeled and documented when modeling the QA (activity ’Extend Model with
Core Application Constraints’). Finally, the complete QA specification, modeled fol-
lowing an AO approach, is obtained and stored in a repository (’AO Architectural
Repository’) of reusable architectural solutions. This is an important contribution
that considerably increases the possibilities of reusing the QA models in different

Towards a Software Process for Aspect-Oriented Modeling of QAs 337

contexts, since all the dependencies either with the core application or with other
QA’ concerns are considered. Moreover, models are available to be directly reused.

4 Process Support Using AO-ADL

In order to support the software process described in the previous section, the
following requirements must be fulfilled: (1) An AO architectural language able
to specify the aspectual bindings between the QA sub-architectures and the core
application architecture must be used; (2) Similarly, an architectural modeling
language able to define and instantiate architectural templates must be used,
and (3) There must be tool Support to store templates and instantiated sub-
architectures for later (re)use in different contexts.

These requirements are satisfied by AO-ADL (6), which defines the concepts of
components and connector templates and provides a repository of components,
connectors and templates that can be imported and reused in the specification
of different software architectures. The AO-ADL language is supported by the
AO-ADL Tool Suite, implemented as an Eclipse plug-in 1. This suite can provide
a catalogue of architectural templates that are ready to be instantiated.

5 Conclusions

In this paper we have defined a process to guide software architects in the use
of AOSD to model those QAs that have a crosscutting nature and important
functional implications. This process promotes the understanding of QAs and
increases their reusability in different contexts by using a repository of reusable
and parameterizable architectural solutions. We propose using the AO-ADL Tool
Suite for this purpose, though other AO architectural approaches may be used.

References

1. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures to
achieve quality attribute requirements. IEE Proceedings 152(4), 153–165 (2005)

2. Juristo, N., Moreno, A.M., Sanchez, M.I.: Guidelines for eliciting usability function-
alities. IEEE Transactions on Software Engineering 33(11), 744–757 (2007)

3. Welie, M.V.: The amsterdam collection of patterns in user interface design (2007)
4. Folmer, E., Bosch, J.: Architecting for usability; a survey. Journal of Systems and

Software 70(1), 61–78 (2004)
5. Geebelen, K., et al.: Design of frameworks for aspects addressing 2 additional key

concerns. Technical Report AOSD-Europe D117, AOSD-Europe-KUL-14 (2008)
6. Pinto, M., Fuentes, L.: AO-ADL: An ADL for describing aspect-oriented architec-

tures. In: Early Aspect Workshop at AOSD 2007 (2007)
7. Barbacci, M., et al.: Quality attributes. Technical Report CMU/SEI-95-TR-021

(1995)
8. Tanter, E., Gybels, K., Denker, M., Bergel, A.: Context-aware aspects. In: Löwe,

W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 227–242. Springer, Heidelberg
(2006)

1 Visit our Eclipse Update Site in http://caosd.lcc.uma.es/AO-ADLUpdates

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 338–341, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Domain Ontology-Based Generative Component Design
Using Feature Diagrams and Meta-programming

Techniques

Robertas Damaševičius, Vytautas Štuikys, and Jevgenijus Toldinas

Kaunas University of Technology, Studentų 50, LT-51368, Kaunas, Lithuania
robertas.damasevicius@ktu.lt, vystu@if.ktu.lt,

eugenijus.toldinas@ktu.lt

Abstract. In domains, where great variability of requirements and products ex-
ists such as embedded system design domain, a product line (PL) approach is
emerging as the most promising design paradigm. The key for the PL imple-
mentation is the use of domain analysis and domain modelling methods. We
propose to represent domain variability using feature models enriched with
lightweight domain ontology. We transform such models into generative com-
ponent specifications using meta-programming techniques. We suggest: 1) to
use domain analysis methods from two perspectives, software engineering and
cognitive science; 2) to enrich domain variability models explicitly by contex-
tualization and repurposing (i.e., by lightweight domain ontology); 3) to repre-
sent the model using the enriched feature diagrams (EFDs); 4) to encode EFDs
using heterogeneous meta-programming.

1 Introduction

Current approaches for architectural design of systems mostly use the product line
(PL) concept. A software PL is a set of software systems that share a common, man-
aged set of features satisfying the specific needs and are developed from a common
set of core assets in a prescribed way [1]. The PL concept, if applied systematically,
allows increasing of software design quality, productivity, provides a capability for
mass customization, and leads to the ‘industrial’ software design [1].

The key for PL implementation are domain analysis and domain modelling meth-
ods. A majority of these methods (e.g., FODA [2], FAST [1]) exploit such domain
properties as scope, commonality and variability [3]. These concepts express domain
content in systems’ features and model a domain through identification of structural,
functional and other features and their relationships. However, with further growth
of complexity, which is inspired by ever-growing technology capabilities, market
demands, and user requirements, it is not enough to rely on content-based and feature-
centric analysis in system development.

The extension of the scope of analysis is needed to extract along with the content-
oriented features other domain relevant knowledge that may be, e.g., related with the
context of use. Context awareness is a very important feature because it hides or

 Domain Ontology-Based Generative Component Design 339

brings more complex relationships of features that can be treated as knowledge. Soft-
ware engineering approaches (such as FODA) do not neglect the importance of a con-
text; however, these approaches deal with a context in a narrow sense (e.g., FODA
neglects possible changes in a context).

The problems we discuss are: 1) the representation of system architecture (its
components) using Feature Diagrams (FDs) enriched by lightweight domain ontology
and 2) the transformation of such feature models into a specification, which describes
generative components encoded using meta-programming techniques.

We suggest: 1) to use domain analysis methods from two perspectives, software
engineering and cognitive science (at least in a narrow sense with context change and
design repurposing); 2) to represent a domain variability model, which is enriched by
context changes and repurposing (i.e., by lightweight ontology), explicitly; 3) to rep-
resent the model using the Enriched Feature Diagrams (EFDs); 4) to encode EFDs us-
ing the heterogeneous meta-programming techniques.

2 Basics of Feature Diagrams and Motivation of Their Extension

Feature Diagrams (FDs) describe the features of a system or a component at a higher
abstraction level. Conventional FD [2] is a tree-like directed acyclic graph, in which
the root represents the initial concept, intermediate nodes represent compound
features, leaves represent non-decomposable atomic features that may have values
(aka variants), and branches represent the parent-child relationships among compound
features or among compound features and atomic features. Furthermore, additional
relationships such as constraints (e.g., <require>, <mutual exclusion>, etc.) be-
tween leaves derived from different parents are identified.

There are mandatory, optional and alternative feature types. Mandatory feature
is always selected (marked by a black circle above its box). Optional feature may be
selected or not. Alternative feature is selected depending on some alternative (condi-
tion). Both are marked by a white circle above its box (see Table 1). If an atomic
feature has values (variants), it is also treated as a variant point.

We propose to enrich FDs by lightweight domain ontologies and provide exten-
sions to the FD notation. Our aim is similar to Batory [4], who is the proponent of
moving FDs closer towards domain ontologies. The structure and meaning of a spe-
cific FD is dependable on the context and the goal of a FD. By changing the <goal>
and <context> attributes we alter the representation and semantics of the FD (e.g.,
feature types). In the PL approach, the context is inevitably changing in architectural
design. This property further leads to treating the <goal> and <context> attributes
as generic categories meaning that each attribute has pre-specified values taken from
a defined value space. Generic context is understood as a higher-level feature having
at least two different values. When representing the same initial concept, the use of
generic context results in the construction of a set of the related FDs. The latter corre-
sponds to the PL approach, in which the related groups of features model product
families. Table 1 summarizes the syntax and semantics of conventional attributes as
well as innovative attributes of enriched FDs (EFDs).

340 R. Damaševičius, V. Štuikys, and J. Toldinas

Table 1. Feature types, ontology and constraints for feature model representation

Feature
type

Definition, formalism and semantics of
relationships

Graphical notation (syntax)

Concept
and its
context

Concept is represented by the root with
the explicitly stated context on the left at
the same level; context is seen as the high-
est mandatory feature with variants

Mandatory Feature B (C, D) is included if its parent A
is included:
a) if A then B; b) if A then C and D
(Relationship-and: <R-and>) a) b)

Optional Feature B (C, D) may be included if its
parent A is included:
a) if A then B or <no feature>
b) if A then C or D or <no feature> a) b)

Alternative
1 (R-case)

Exactly one feature (B or C or D) has to
be selected if its parent A is selected:
a) if A then case-of (B, C)
b) if A then case-of (B, C, D)
(Relationship-case: <R-case>)

a) b)

Alternative
2 (R-or)

At least one feature has to be selected if its
parent A is selected:
a) if A then any-of (B, C)
b) if A then any-of (B, C, D)
(Relationship-or: <R-or>)

a) b)

Alternative
3 (R-xor)

if A then (B but ¬C) or (C but ¬B)
(Relationship-xor: <R-xor>; differences
from <R–case>: 1) two sons only; 2) label
“xor” is written at the parent’s node)

Ontology A compound of atomic features and their
relationships; ontology expresses the do-
main knowledge in some way

Constraint
xor

if F then ¬K and if ¬F then K
(<R-xor> between atomic features F & K
derived from different parents: K xor F

Constraint
require

Feature K requires feature F: K requires F

3 Encoding of EFDs as Ontology-Based Generative Components

A generative component allows generating component instances specified by meta-
parameter values on demand. An ontology-based generative component implements
the ontology and other features represented in the EFD using heterogeneous meta-
programming [5] as a generative technology. We consider encoding as a model trans-
formation, i.e., a process that transforms a source model (EFD) into a target model
(meta-program). As meta-program is a compound specification of two languages
(meta-language and domain language), we use two-level model transformations. By
transformations we mean the rewriting of a graphical notation of the EFD into a tex-
tual meta-language notation. At Level 1, the EFD is transformed into a meta-program
model. At Level 2, the meta-program model is transformed into a meta-program itself.

 Domain Ontology-Based Generative Component Design 341

Transformation rules at Level 1 are as follows:

A. Context as a higher-level feature (variant point) is transformed into the highest-
level meta-parameter(s).

B. Feature constraints are transformed into constraints that are expressed in terms
of meta-parameters and their relationships using meta-constructs.

C. Variant points that describe ontology-based features in the EFD are transformed
into the ontology related meta-parameters; and the remaining variant points
are transformed into other meta-parameters.

D. Meta-parameter values are identified.

Transformation rules at Level 2 are as follows.

− Locations that relate to variant points (variants) are identified and variability is
described using meta-language constructs (e.g., meta-for, meta-if, etc.).

− Completeness of encoding of the EFD as well as encoding correctness is
checked using tools that support meta-programming.

4 Conclusions

In many cases, architecture of an embedded system is not a purely static structure but
rather is a dynamic structure. The higher complexity of architecture (in terms of fea-
tures), the greater need to model domain variability is. Architecture may depend on
the context leading to the introduction of new features and specification of more com-
plex relationships among features (i.e., domain ontology). Although Feature Diagrams
can model and manage domain complexity and variability, their expressiveness for
modelling domain ontologies is not enough.

We consider two challenging tasks: 1) to enrich Feature Diagrams with context in-
formation and repurposing (i.e., by domain ontology) and then to represent domain
variability in a feature model explicitly; 2) to encode Enriched Feature Diagrams us-
ing the heterogeneous meta-programming techniques, thus resulting in the creation of
generative components for specifying families of domain systems.

References

1. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based Software
Development Approach. Addison-Wesley, Reading (1999)

2. Kang, K.C., Lee, K., Lee, J., Kim, S.: Feature-Oriented Product Line Software Engineering:
Principles and Guidelines. In: Itoh, K., Kumagai, S., Hirota, T. (eds.) Domain Oriented Sys-
tems Development - Practices and Perspectives. Taylor & Francis, Abington (2003)

3. Coplien, J., Hoffman, D., Weiss, D.: Commonality and Variability in Software Engineer-
ing 15(6), 37–45 (1998)

4. Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

5. Štuikys, V., Damaševičius, R.: Metaprogramming Techniques for Designing Embedded
Components for Ambient Intelligence. In: Basten, T., et al. (eds.) Ambient Intelligence: Im-
pact on Embedded System Design, pp. 229–250. Kluwer Academic Publishers, Dordrecht
(2003)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 342–345, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Facets of Adaptivity

Claudia Raibulet

Università degli Studi di Milano-Bicocca, DISCo, Viale Sarca 336, U14, 20126, Milan, Italy
raibulet@disco.unimib.it

Abstract. Adaptivity is one of the key requirements of today’s information
systems. It is used in various areas which may range from control and operating
systems to networks, from robotics to intelligent systems, from multimedia to
information retrieval and Web Services. Essentially, it is related to changes per-
formed in the systems at run-time. These changes may regard various aspects:
architectural, structural, behavioral or content. Considering the diversity of its
application areas and of ways of achievement, this paper aims to discuss the
facets of adaptivity by raising the following questions: Why is it needed?
Which are its objectives? Which are its main open research issues?

Keywords: definition of adaptivity, facets of adaptivity.

1 Introduction

More and more information systems are adaptive. The concept of adaptivity is gain-
ing the attention of the researchers working in various fields. These affirmations are
sustained by the growing number of courses, books, journals, conferences focused on
adaptivity. Adaptivity may be used to achieve different objectives through different
mechanisms. Hence, there are various understandings of adaptivity. It is difficult, if
not impossible (yet), to find a precise or complete definition of adaptivity. Each work
specifies what it means through adaptivity and how it achieves adaptivity.

This paper aims to discuss several facets of adaptivity by addressing the following
questions: why is adaptivity used and which are the areas in which it is successfully
exploited. The objective of this discussion is to identify the key points of a possible
definition of adaptivity as well as its related open research issues.

2 Why Is Adaptivity Used?

The various different reasons claiming for adaptivity derive mostly from the growing
complexity of today’s information systems as well as from the need to improve pro-
ductivity and performance, and automate configuration, re-configuration, control and
management tasks. Three of the most important reasons are identified in [9]: (1) sys-
tems should run continuously in the presence of components’ faults, variability in
resources or users’ needs, (2) administrative overheads should be reduced allowing
smooth operation with minimal human oversight, and (3) systems should provide
various levels of services to different users depending on their needs and context.

 Facets of Adaptivity 343

Ubiquitous and autonomic computing contribute to the growing interest in adaptiv-
ity [8]. They have different objectives: ubiquitous computing aims to remove the
boundaries on how, when, and where humans and computer interact, while autonomic
computing regards self-managing systems which require only high-level human guid-
ance. Although, they share common requirements regarding adaptivity: survival of
components failure or security attacks, automation of configuration and management
tasks, modification of architectural or behavioral aspects at run-time.

An organizational point of view on adaptivity in an enterprise network infrastruc-
ture regards: the fortification of security, increase of productivity, and reduction of the
complexity [7].

3 Where Is Adaptivity Used?

Primarily, adaptivity has been used in the context of control engineering to address
unpredicted situations and to ensure an optimal working of a system in the presence
of internal or external changes [1]. Currently, its advantages are exploited in various
types of systems and domains: operating systems, networks, robotics, artificial intelli-
gence, e-learning, multimedia, information retrieval and Web Services.

An extensible operating system enables applications to adapt the environment to
their current needs by managing services through a late binding mechanism. This
enables the modification of the architecture and behavior of the system at run-time.

A network is considered adaptive if it is able to obtain the maximum profit from
the minimum network resources by managing properly the network traffic based on
the user service requests. Adaptivity comes to complement the QoS or mobility is-
sues. Essentially, it is translated in terms of flexibility, security and availability.

In robotics, adaptivity addresses the dynamic behaviour, situations and environ-
mental modifications. Robot systems observe their environment and their current
status, reflect on them and make changes in their behaviour. Multi robot systems re-
configure themselves by changing their topology and behaviour to achieve a common
goal, Intelligent systems observe and learn by acquiring information and reason about
it to recognize new situations and to address them properly in the future. Hence, adap-
tivity may improve or extend the functionalities of intelligent systems.

In e-learning, adaptivity aims to improve the efficiency of the educational systems
in heterogeneous environments where students have different backgrounds and abili-
ties to comprehend knowledge. An adaptive system provides a personalized mecha-
nism for students to achieve a similar level of knowledge.

Multimedia and information retrieval systems exploit adaptivity to manage prop-
erly information according to the available computational and communication re-
sources. Users work in different environments. In this context, adaptivity is based on
the networks, devices, users’ environments and type of required information.

Web services can be required in various contexts and with different characteristics.
Adaptivity consists in the ability of the provider to offer a service in the most appro-
priate way for the current customer and its current context.

344 C. Raibulet

4 Definition and Open Issues

In 1963 Zadeh sustained that “it is difficult to find a satisfactory explanation, much
less precise definition of this notion in the literature. Much of the vagueness surround-
ing the notion of adaptivity is attributable to the lack of clear differentiation between
the external manifestations of adaptive behavior on the one hand, and the internal
mechanism by which it is achieved on the other” [10]. Further, he motivates this af-
firmation through “the large ways in which adaptive behavior can be realized”.

These affirmations are still true today: each work explains what it intends for adap-
tivity. Examples of possible definitions for adaptivity are listed in the following.

Architectural adaptation focuses on the changes made at run-time in the structure
of the components of a system and/or in the interactions among them by using an
architectural model of a system [4].

Compositional adaptation regards the modifications of the structure and behavior
of a software made at run-time due to the changes occurred in its execution environ-
ment [8].

Structural adaptation of a software component consists in updating its structure
while preserving its behavior and services [2]. Structural adaptation means changing
dynamically the type of application components such as a method signature [5].

Behavioral adaptation focuses on the changes made dynamically in the execution
of software components in a non intrusive way (e.g., by changing its configuration or
by intercepting its requests and replies) [5].

Content adaptation deals with the transformation and manipulation of contents
based on the features of the application or device requiring them [6].

Service adaptation is translated into content as well as behavioral adaptation [3].
These interpretations of adaptivity are characterized by three recurring concepts:

1. Adaptivity is requested by changes occurred internally inside a system or exter-
nally in its execution environment

An immediate consequence of this affirmation is that an adaptive system should be
introspective and/or context-aware. Open issues are related to the answers to ques-
tions such as: Which are those changes claiming for adaptivity? Which are the
changes not claiming for adaptivity? How to monitor a system and/or its execution
environment to reveal the meaningful changes for adaptivity? Can changes occur
simultaneously or independently? Can they be addressed independently from each
other? Usually, changes are revealed by capturing information about various inter-
nal/external aspects. How to represent and manage this knowledge?

2. Adaptivity consists in changes performed in a system by the system itself
An immediate consequence of this affirmation is that an adaptive system should be
autonomous and reflective. Open issues are related to the answers to questions such
as: How to identify the changes which should be done? How to define them? How to
apply them? Are there changes which cannot be considered part of adaptivity? What
should not be changed in an adaptive system? Which are the criteria to define an
adaptive change? Are there many levels of adaptivity? Are there any metrics to ex-
press the levels of adaptivity of systems? Can a system evolve through adaptivity?

 Facets of Adaptivity 345

3. Adaptivity is performed at run-time
Open issues are related to the answers to questions such as: Are there any verifica-
tion/validation mechanisms of the functional and non-functional aspects of an
adaptive system after the application of changes at run-time? Is simulation a possible
solution to this problem? Are there any simulation models for adaptive systems?

5 Conclusions

Considering the reasons why adaptivity is used its possible facets may include: auto-
mation of human tasks, performance and productivity improvement, content access
and exploitation enhancement, reduction of complexity, fortification of security, man-
agement of critical situations. From its application domains, the facets may result in:
controlling, networking, automation, intelligence, content and service personalization.
Is adaptivity a common term for all these different issues? Can it be confounded with
scalability, mobility, late-binding or evolution mechanisms? In [9], the authors assert
that an adaptive system may be characterized by one or more of the following proper-
ties: self-healing, self-configuration, self-management and self-optimization. Can
these properties be considered additional facets of adaptvity?

Adaptivity plays an important role in the development of today’s information sys-
tems. [8] identifies four of its main issues: assurance, security, decision support, and
interoperability. This list should be extended with formalisms, models, patterns, tools
for design and testing, criteria and metrics, and evaluation mechanisms.

References

1. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1995)
2. Bastide, G., Seriai, A., Oussalah, M.: Software Component Re-engineering for their Run-

time Structural Adaptation. In: Proceedings of the 31st Annual International Computer
Software and Applications Conference, pp. 109–114. IEEE Computer Society Press, Los
Alamitos (2007)

3. Choi, O., Yoon, Y.: A Meta Data Model of Context Information for Dynamic Service Ad-
aptation on User Centric Environment. In: Proceedings of the International Conference on
Multimedia and Ubiquitous engineering, pp. 108–113. IEEE Computer Society Press, Los
Alamitos (2007)

4. Garlan, D., Cheng, S.W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
based Self-Adaptation with Reusable Infrastructure. IEEE Computer 37(10), 46–54 (2004)

5. Gorton, I., Liu, Y., Trivedi, N.: An extensible and lightweight architecture for adaptive
server applications. Software – Practice and Experience Journal (2007)

6. He, J., Gao, T., Hao, W., Yen, I.-L., Bastani, F.: A Flexible Content Adaptation System
Using a Rule-Based Approach. IEEE Transactions on Knowledge and Data Engineer-
ing 19(1), 127–140 (2007)

7. McHugh, J.: Adaptive Networks Vision. ProCurve Networking, HP Innovation (2007),
http://www.hp.com/md/pdfs/
Adaptive_Networks_Vision_White_Paper.pdf

8. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive Soft-
ware. Computer 37(7), 56–64 (2004)

9. Seceleanu, T., Garlan., D.: Synchronized Architectures for Adaptive Systems. In: Proceed-
ings of the 29th Annual International Computer Software and Applications Conference,
Edinburgh, UK, pp. 146–151 (2005)

10. Zadeh, L.A.: On the Definition of Adaptivity. Proceedings of the IEEE, 469–470 (1963)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 346–349, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Transition to Service-Oriented Enterprise Architecture

Martin Assmann1,3 and Gregor Engels2,3

1 International Graduate School of Dynamic Intelligent Systems
2 Dept. of Computer Science

3 University of Paderborn
Warburger Straße 100, 33098 Paderborn, Germany

{martin.assmann,engels}@upb.de

Abstract. Enterprise Architecture (EA) has undergone many changes since
the IT has found its way into enterprises. At the moment the Service-Oriented
Architecture (SOA) is being hyped but has also gained some importance.
Implementing SOA can have many implications for an enterprise, depending on
how visionary the implemented architecture is. This paper provides the descrip-
tion of an enterprise architecture that is fully-fledged concerning service-
orientation and points out the architectural challenges that have to be mastered
with future research results.

Keywords: Enterprise Architecture, Service-Oriented Architecture.

1 Introduction

“Change is the only constant” is a citation used often by business analysts. As de-
picted in [1], over the years the factor change has steadily increased. It is pointed out
that several average life cycle times, namely those for products, applications, and
processes, have been decreased by magnitudes. During this time enterprise architec-
ture has changed significantly several times. In the seventies computers found their
way into enterprises, followed by IT-concepts like Component Based Architecture
and Enterprise Application Integration. The implementation of these concepts has
often lead to huge projects that heavily influenced the enterprise architecture (a brief
definition is given in 1.1).

One of the most recent concepts is Service-Oriented Architecture, whereas it is not
really clear what it means as a common definition is not available. Definitions are
given in [1], [2], and [3] for example. While [3] merely addresses technical issues, [1]
and [2] refer to process and organizational aspects. As no fitting definition is avail-
able, this paper presents a description of a fully developed SOA for enterprises. This
allows deriving tasks for enterprise architects and formulating research questions. The
goal of the research intends helping the architect fulfilling his tasks.

1.1 Enterprise Architecture and Service-Oriented Architecture

Enterprise Architecture addresses nearly the whole enterprise. It comprises business
and IT architecture and also addresses their cohesion. The business architecture itself

 Transition to Service-Oriented Enterprise Architecture 347

consists of business goals, organization and processes. The IT-architecture consists of
software and infrastructure architecture. All these parts define enterprise architecture.
In order to develop a complex enterprise architecture its architects have to be aware of
all these different sub-architectures and their coherence. A detailed description for EA
including a meta-model is given in [4].

The notion Service-Oriented Architecture spans several topics and a comprehen-
sive definition here clearly exceeds the space limit. For extensive descriptions on
SOA we refer to [1] and [2]. In the following we focus on the aspects being important
for the statements of this paper. We regard SOA as an architectural style for enterprise
architecture that aims at an optimal IT realization (automation) of business processes.

1.2 Relation between SOA and EA

As shown in figure 1, one of the main ideas of SOA is to bridge the gap between the
business process layer and the application layer. The service layer is introduced for
this purpose. Bridging the gap means to ease the implementation of processes with IT
while fostering the reuse of services. Therefore SOA influences the business process,
the service and the application layer. Hence, the introduction of such a Service-
Oriented Architecture affects nearly the complete enterprise architecture.

Business Process
Layer

Application
Layer

Infrastructure
Layer

Service
Layer

Enterprise
Architecture

Business
Architecture

Infrastructure
Architecture

IT
Architecture

Organization

Software
Architecture

Goals

Processes

Basic
Services

Composite
Services

Orchestration

Applications

Gap between
Processes

and IT

Fig. 1. Relation between SOA and EA

2 Service-Oriented Enterprise Architecture

In figure 2 our conception of a fully developed Service-Oriented Enterprise Architec-
ture (SOEA) is depicted. It describes the most important elements of the three layers
and also the problems an enterprise architect is confronted with. An extensive descrip-
tion of the evolution from the beginning to the here depicted enterprise architecture
style is given in [5]. We will explain the figure bottom up.

Services abstract from the application layer and are published in the service regis-
try. Furthermore they can be orchestrated in two ways. On the one hand this can be
hard-wired, (Incoming order service), so that a service directly uses other services. On
the other hand soft-wired by an orchestration engine that allows to model processes

348 M. Assmann and G. Engels

Business
Process

Layer

Application
Layer

Service
Layer

Complex Event Processor

Middleware

Business Process Management

CRM Application

Orchestration
Engine

ERP Application

Payment
Component

Resource
Component

Client
Component

Order
Component

realized by

GUI (Portal)GUI (Portal)

isolated process control

Call CallCall

Request
Create client

and order
Both

created
Procure
material

Material
available

Give work
orders Work done Payment

handling

Incoming
order

Order
Service

Estimation
Service

Procurement
Service

Billing
Service

Client
Service

Worker
Service

Event
Dispatcher

Event
Correlation

Process
Monitoring

Service
Registry

Fig. 2. Fully developed Service-Oriented Enterprise Architecture

with services and that can execute these process plans afterwards. In the latter case the
process logic that defines the process control flow exists in a very explicit form. It can
be easily changed (without knowledge of special programming languages like Java) and
therefore provides a high flexibility regarding process changes. The architect has to
decide how services are tailored and orchestrated so that their reuse potential is optimal.

Services should implement event communication so that business events can be
immediately sent and processed. All events are sent to the event dispatcher and from
there to all subscribers of the event (publish-subscriber pattern). The event correlator
is part of the complex event processor and receives a copy of all events. It is watching
incoming events over time and checks whether they fit to predefined rules. On the one
hand the complex event processor allows describing business logic in the explicit
form of rules. A usual case would be that an event triggers the execution of a service
orchestration. On the other hand business events can be perfectly used for business
process monitoring purposes. Without events it would be hard to gather all the
information online. The monitoring information itself could be used for process im-
provement. The architect has to define event types and the rules for complex event
processing, so that the relevant information can be monitored.

With all this the means for Business Process Management (BPM) are given,
because the four steps designing, building, operating and monitoring processes are
realized. Designing and building is realized by modeling processes with a tool for a
service orchestration language like BPEL. Operating is done by the orchestration
engine when interpreting the predefined process models. Of course the orchestration
engine only triggers the operation of services that do most of the work. The monitor-
ing component delivers information for redesigning the processes. By this the man-
agement cycle is closed. A business analyst that controls the BPM will define change
requests that have to planned and realized by the enterprise architect.

 Transition to Service-Oriented Enterprise Architecture 349

The GUIs should be as flexible as the processes because often with a change of a
process a change in the GUI becomes mandatory. In every case the GUIs functional-
ity has to be decoupled from applications, i.e. they interact with services only. The
architect has to consider that the GUIs must be flexible and reusable. Therefore he has
to allow reuse in different environments and also tailor the reusable parts in the right
granularity.

3 Emerging Research Questions

SOA sure brings up a plethora of research questions, but we will focus on those that
concern enterprise architecture and Service-Oriented Architecture.

The evolution from enterprises today to enterprises that implement the presented
form of EA is drastic. It is drastic because SOA is the first architectural style for EA,
hence it affects large parts of the enterprise. Because of this the evolution demands
managing enterprise architecture in whole. Moreover, the new architectural style
increases complexity of EA, which makes it hard for the architect to keep the full
picture. The first research question derived from these tasks is: „How to model and
plan EA-evolution to SOA-style in a holistic way?” A good starting point for this is
the EA meta-model model given in [4]. With minor changes regarding to some SOA
aspects like service orchestrations and complex event processing, the approach in [4]
is suitable to describe a targeted service-oriented enterprise architecture. Such a
model supports in planning enterprise evolution, which includes the tailoring of ser-
vices, orchestrating them and defining events and their corresponding rules.

A step further is not only to plan evolution but also to manage it. Therefore the EA
(steadily) has to be evaluated if it conforms to the aimed style (in our case SOA). For
this task criteria have to be defined that describe such an SOEA. Of course it would
be helpful if the criteria and the model of the enterprise architecture were on a formal
basis, so that further research for automation could be done. A question that might be
partially answered: “How to automatically decide whether the EA conforms to SOA-
style?” and secondly “How to bring up suggestions for changes that evolve the enter-
prise towards SOA-style?” If other EA styles will emerge, the developed methods
could also help for the evaluation of the new styles.

References

1. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA. Service-oriented architecture best prac-
tices. The Coad series. Prentice-Hall, Upper Saddle River (2006) (6th print)

2. Erl, T.: Service-oriented architecture. Concepts, technology, and design. Prentice-Hall, Up-
per Saddle River (2006) (6th print)

3. Dostal, W.: Service-orientierte Architekturen mit Web Services. Konzepte - Standards -
Praxis. 1. Elsevier Spektrum Akad. Verl., Aufl. München (2005)

4. Braun, C., Winter, R.: A Comprehensive Enterprise Architecture Metamodel and Its Imple-
mentation Using a Metamodeling Platform. In: Desel, J., Frank, U. (eds.) Enterprise Model-
ling and Information Systems Architectures (EMISA), Proc. of the Workshop in Klagenfurt,
October 24-25. LNI, Bd, vol. 75, pp. 64–79. Gesellschaft für Informatik (GI) (2005)

5. Engels, G., Assmann, A.: Service-Oriented Architecture: Evolution of Concepts and Meth-
ods. In: Proc. of the Twelfth IEEE International EDOC Conference. IEEE Press, Los Alami-
tos (2008)

Diagrammatic Modeling of Architectural

Decisions

Andrzej Zalewski and Marcin Ludzia

Warsaw University of Technology, Institute of Automatic Control and Computational
Engineering, Warsaw, Poland
a.zalewski@ia.pw.edu.pl

Abstract. The paper presents a semi formal model of architectural de-
cisions referred to as Maps of Architectural Decisions (MAD). In a form
of a diagram they represent the most important components of archi-
tectural decisions (concerns, possible choices, constraints etc.) as well as
logic of architectural decision making, i.e. dependencies between architec-
tural decisions. This increases the level of formalism of the architectural
decisions documentation, improves its readability and makes architec-
tural knowledge gathered during the decision making process easier to
comprehend, share and maintain.

1 Introduction

Modeling of architectural decisions is a focal issue of software architecture re-
searchers. According to the classical paper by [1] they should include the fol-
lowing attributes: addressed issue, considered decision variants (positions), re-
quirements, constraints, decision made, rationale (argument), implications. This
provides a structured form of textual documentation of architectural decisions.
The drawbacks of textual documentation have already been fully investigated
in the software engineering discipline: it is error prone thus often inconsistent
and ambiguous, difficult to analyse and verify, inefficient in presenting complex
concepts.

In the software engineering discipline, such drawbacks have often been re-
solved by increasing the level of model’s formality according to the scheme: tex-
tual (informal) – semi-formal (diagrammatical) – formal (mathematical) model.
Increasing the level of formality of the models of architectural decisions seems to
be an important research challenge. The most important developments towards
further formalization of architectural decision models were so far:

– A tool called ’Archium’ supporting architectural decision making has been
presented in [3]. It concentrates on documenting the decision making process:
the decisions are modeled as text records, however, their dependencies are
modeled in the form of dependency graph. The tool supports traceability,
basic completeness verification, detection of superfluous decisions;

– Knowledge management techniques based on ontologies have been used for
managing architectural decisions in [2], however, these ideas have not been
fully prover in practice yet;

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 350–353, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Diagrammatic Modeling of Architectural Decisions 351

– Extension of Tyree’s templates to support decision makers collaboration and
knowledge reuse – proposed in [4];

– Attribute decision graph presented in [5] in fact models the process of making
architectural decisions driven by satisfying predefined attributes.

Maps of Architectural Decisions is another approach to the challenge of for-
malizing architectural decisions.

2 MAD – Models and Notation

MAD consists of two basic models: Architectural Decision Relationship Diagram
(ADRD) and Architectural Decision Problem Map (ADPM), for an example –
see fig. 2. The ADRD represents the set of identified architectural problems (con-
cerns) and dependencies between them. The ADPM diagram is used to model all
the important details of a given architectural decision problem and consists of
the following objects: Architectural Decision Problem (ADP), Decision Variant
(DV), Constraint (DC), Requirement (DR), Decision maker/Stakeholder and
Connector (Constraint-Variant Connector or Variant-Problem Connector). The
summary of MAD notation has been shown in fig. 1.

Each of the objects in ADRD or ADPM is additionally characterized with a
set of attributes (they have been omitted due to the limit of space).

Fig. 1. Maps of Architectural Decisions – notation summary

352 A. Zalewski and M. Ludzia

Fig. 2. MAD models for architectural decisions concerning architecting robot control
system

The application of MAD has been illustrated on an example of robot con-
trol system presented in [6] – see fig. 2. We can comprehend from the ADRD,
that there were three decision problems resolved so far and the fourth decision
problem was added.

Each of the architectural decision problems can be modelled in detail with
ADPM. An example decision problem is shown in fig. 2 (to the right). The
central object of this diagram is an ADP object. These objects should first
be defined in ADRD. The model of architectural decision problem consists of
i) a set of considered solution variants modelled with DV objects attached to
the ADP object; ii) Constraints and Requirements – instantiated from the dic-
tionary of constraints and requirements (each Decision Variant should be as-
signed its own Constraints/Requirement set of instances, the constraints and
requirements objects should be linked to Decision Variant by Constraint and
Requirement Connector (CRC) with an arrowhead pointing the variant object),
iii) Stakeholders involved in decision making process represented by an Decision
Maker/Stakeholder object.

Architects evaluate all the Constraints and Requirements for each of the De-
cision Variants. The constraints and requirements may turn out to be satisfied,
not satisfied or partially satisfied (requirements only). The variants, that do not
satisfy all the constraints are marked as ”Out of boundaries” and excluded as
from the set of potential choices in the decision making process.

Variants meeting the requirements and satisfying the constraints should be
marked as ”Feasible”. Architect chooses one of the ”Feasible” variants and marks
it as ”Chosen”. If chosen DV necessitates making some other decision, it is
reflected as a triangle on the left side of a DV object. Additionally, architect
should consider if there are any new constraint introduced by the decision. If so,
the constraint should be defined in a diagram and linked with a variant object
by CRC with an arrowhead directed to the Constraint object. The constraint
will be automatically added to the constraints dictionary.

The entire architecture design is finished and properly documented, when all
defined decision problems are described by ADPM models and all the decisions

Diagrammatic Modeling of Architectural Decisions 353

have been made and none of them is in challenged state (does not require recon-
sidering because of some other decision, which has been made).

3 Conclusion Further Research

The paper has been devoted to the presentation of a novel approach to the mod-
eling of architectural decisions and the process of architectural decision making.
The MAD models can be perceived as a tool for ”mind-mapping” architectural
decisions. Their unique feature is that they document the internal structure of
architectural decisions in the form of a diagram. The notation assists both mak-
ing an individual architectural decision – depicting all the important components
on a single diagram – as well as documenting the whole process of architectural
decision making – showing the dependencies between architectural decisions in
the form of a diagram. As the level of formalism has been increased an automated
checking similar to those described in [3] should be possible to implement.

Further research should include:

– interfacing the MAD and traditional modeling approaches (views, ADL’s);
– predefining the dictionaries of the attributes of diagram’s objects;
– providing formal definitions of diagrammatic models and their semantic;,
– defining the desired properties of the graphical models (consistency, com-

pleteness, others) and methods of their analysis;
– developing software tools supporting architecting with MAD.

References

1. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Software (March/April 2005)

2. Kruchten, P.: An Ontology of Architectural Design Decisions in Software-Intensive
Systems. In: Proc. of 2nd Groningen Workshop on Software Variability, Rijksuni-
versiteit Groningen, pp. 54–61 (2004)

3. Jansen, A., et al.: Tool Support for Architectural Decisions. In: Proceedings of the
Working IEEE/IFIP Conference on Software Architecture (WICSA 2007). IEEE,
Los Alamitos (2007)

4. Zimmermann, O., et al.: Reusable architectural decision models for enterprise appli-
cation development. In: Overhage, S., Szyperski, C.A., Reussner, R., Stafford, J.A.
(eds.) QoSA 2007. LNCS, vol. 4880, pp. 15–32. Springer, Heidelberg (2008)

5. Schwanke, R.W.: Layers, Decisions, Patterns, Styles, and Architectures. In: Pro-
ceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA
2001), pp. 137–147. IEEE, Los Alamitos (2001)

6. Gueorguiev, A., et al.: Design, Architecture and Control of a Mobile Site-Modeling
Robot. In: Proceedings of the IEEE 2000 International Conference of Robotic and
Automation, San Francisco. IEEE, Los Alamitos (2000)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 354–358, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Web Services Domain Analysis Based on Quality
Standards∗

F. Losavio**, A. Matteo, and R. Rahamut

Centro ISYS, Escuela de Computación, Facultad de Ciencias
Universidad Central de Venezuela

Apdo. 47567, Los Chaguaramos 1041-A, Caracas, Venezuela
{flosav,almatteo,rrahamut}@cantv.net

Abstract. Web Services (WS) are an alternative to the lack of interoperability
of applications, to facilitate integration via Service Oriented Architecture
(SOA). The main goal of this paper is to establish a correspondence between
three WS-related standards, WSA (Web Services Architecture) representing
industrial and marketing requirements, ISO/IEC 9126-1 quality model to
specify standard quality requirements, and ISO/IEC 13236 to specify the
measurement model for WS-based applications. A domain analysis process is
defined to provide guidelines to integrate the information of the three standards,
facilitating the automatic generation of standardized quality of service contracts
between clients and providers.

Keywords: web-services architecture; domain analysis; quality requirements;
ISO/IEC 9126-1; ISO/IEC 13236.

1 Introduction

A Web Services (WS) is considered a software component offering a service. WS can
be grouped on the basis of the functionality or service they provide. The WSA
requirements document of the W3C describes seven critical top-level quality goals
that are the minimal set of requirements for a common architecture that a WS-based
application should comply: Interoperability, Reliability, WWW Integration, Security,
Scalability and Extensibility, Team Goals, Management and Provisioning [1]. A
broad initial analysis of the domain of WS-based applications is given by identifying
the quality goals for the base-line or generic architecture, shared by a family of
applications within the domain [2]. This paper aims to define a process, which on one
hand establishes a correspondence between the WSA top-level critical goals and the
ISO/IEC 9126-1 standard for software product quality, to facilitate at a high
abstraction level, common understanding of the WS domain architectural properties
[3, 4]. Moreover, the quality requirements associated with the functionality of each

 ∗ This work is partially supported by the Consejo de Desarrollo Científico y Humanístico de la

Universidad Central de Venezuela, MODABAC Project No. 03-005821-2008 and
GEMOCLASS Project No. 03-006051-2005.

** Corresponding author.

 Web Services Domain Analysis Based on Quality Standards 355

WS type, defining sub-families of applications, are also specified using the ISO/IEC
9126-1 quality model. On the other hand, the ISO/IEC 13236 standard [5] which
specifies the quality of services (QoS), is used to define a measurement model by
specifying the measurable attributes, according to general quality of service metrics.
In consequence, a standard quality model and measurement model for the WS
application domain are defined.

This paper is structured as follows, besides this introduction: a central section
describing the process to characterize the WS application domain and a final section
presenting the conclusion and future work. The case study for Transactional WS is
not presented in this paper for lack of space; it can be seen in [8].

2 Analysis of the WS Domain

Step 1. Define functionality. Classification of WS
This classification of WS is based on functional requirements (see Table 1) [6, 7].

Table 1. Functionality based WS classification

WS family Functional requirements Examples
Information and collaborative environments Data Base operations Distributed authoring systems

Transactional E-commerce operations, encrypting On-line banking

Workflow Process monitoring operations Planning/Scheduling systems

Web Portal E-search and e-communication Search engines, On-line news

Security Access control, encrypting Authentication and authorization

Step 2. Define Quality Model
The ISO/IEC 9126-1 standard defines a hierarchical model based on six main high
level quality characteristics, also called quality requirements: Functionality,
Reliability, Usability, Efficiency, Maintainability and Portability; these are the
minimal set of non functional properties characterizing applications within a domain.
A correspondence with the WSA critical goals is established to specify standard
architectural quality (see Table 2).

The quality model shows the minimal characteristics that providers must comply to
guarantee user satisfaction. In consequence, a WS must satisfy some of the quality
properties indicated in Table 2. According also to this table, a WSA compliant service
is now also compliant with the ISO/IEC 9126-1 standard characteristics for
internal/external software product quality, to which a high, medium or low goal
ranking has been assigned by consensus by an expert group. Usability and efficiency
are ranked low because they are not present as WSA critical goals [1]; they are not
shown in the table. In consequence, the quality model for WS domain considering
relevant architectural properties is conformed only by characteristics ranked high or
medium, which are the following: functionality (interoperability, security,
suitability), reliability (availability), maintainability (Changeability (extensibility,
management and provision)) and portability (adaptability (scalability)).

356 F. Losavio, A. Matteo, and R. Rahamut

Table 2. Quality Model for WS-based application domain, showing traceability among
ISO/IEC 9126-1 and WSA. The codes of the WSA goals are taken from [1].

ISO/IEC9126-1
characteristics Correspondence between ISO/IEC9126-1 sub-characteristics and WSA critical goals

Interoperability
ISO/IEC Interoperability
WSA Interoperability (AG001)

Semantics is similar. The capability to interoperate
within different environment
Goal: high

Security
ISO/IEC Security
WSA Security (AG004)

Semantics is similar. It means access control.
Goal: high

Suitability
ISO/IEC Suitability

Functionality

WSA Team Goals (AG006)

Semantics is similar. It means to satisfy the user
specific tasks.
Goal: medium

Availability
ISO/IEC Availability

Reliability

WSA Reliability (AG006)

Semantics is similar. It means a combination of
maturity, fault tolerance and recovery from failures
Goal: high

Extensibility
ISO/IEC Changeability
WSA Scalability and Extensibility (AG006)

The WSA extensibility goal is considered as sub-sub-
characteristic of changeability. Goal: high.

Management and provisioning
ISO/IEC Changeability
WSA Management and Provisioning (AG007)

The WSA management and provisioning goal is
considered a sub-sub-characteristic of changeability
Goal: high.

Integration
ISO/IEC Changeability

Maintainability

WSA Integration (AG003)

The WSA integration goal is considered a sub-sub-
characteristic of changeability.
Goal: medium

Scalability
ISO/IEC Adaptability

Portability

WSA Scalability and extensibility (AG006)

The WSA scalability goal will be considered a sub-
sub-characteristic of adaptability.
Goal: medium

Notice that the WSA critical goals extensibility and management and provision are

shown as sub-sub-characteristics of maintainability. Now, for each type of WS,
quality properties are assigned to the functional requirements to express quality goals
they should fulfill. New sub-characteristics or sub-sub-characteristics can be added
accordingly, if needed. Table 3 shows that efficiency for Transactional and Web
portals and accuracy for Transactional and Collaborative environments were not
considered as WSA requirements [1], since they are concerned on how the
functionality must be accomplished. Observe that the fulfillment of some of the
quality requirements imply a commitment or trade-off with other requirements.

Table 3. Quality requirements for each WS type

Quality requirements for sub-families of WS-based applications - characteristics
and sub-characteristics according to ISO/IEC 9126-1 WS Type

Functionality Reliability Maintainability Portability Efficiency
Information and
collaborative environments

-accuracy -availability

-changeability

Transactional -security
(integrity)
-accuracy

-availability

 -time behavior
-resource utilization

Workflow -suitability
Web Portals -adaptability:

scalability
-time behavior
-resource utilization

Security -security

The WSA quality model, enriched with the qualities related to WS functionality,
constitutes the standard quality model for the WS-based application domain. It
expresses the overall architectural quality for WS-based applications. The enrichment
is obtained considering all the quality characteristics shown before for WSA and

 Web Services Domain Analysis Based on Quality Standards 357

adding the quality characteristics (shown in boldface), derived from the functionality
quality goal for each WS, shown in Table 3: efficiency (time behavior, resource
utilization) is required for some of the WS and the sub-characteristic compliance to
standards and regulations is required to achieve interoperability, in order that the
service conforms to standards like SOAP, UDI, WSDL in their respective versions.
We assume that this characteristic is present for all WS types and so it is not specified
in Table 3. The sub-characteristic accuracy has been included for data transactions
indicating the precision of an event, set of events, condition or data [5]. Notice that
often the term integrity is used in WS transactions to denote the fact of maintaining
the correction of the transaction with respect to the source, which we are considering
in the model as security.

Step 3. Define Measurement Model
The QoS, which are quantifiable aspects or parameters, are considered here as
attributes of the sub-characteristics of the WS domain quality model. Observe that
traceability between ISO/IEC 13236 [5] and ISO/IEC 9126-1 [4] is not explicitly
provided by the standards, making difficult their practical usage. This work is a
contribution towards the fulfillment of this gap. It is clear that the metrics presented
are quite general and should be customized to establish the contractual part when
using the service in a particular application. In what follows, the quality model is
further refined for each WS type of Table 3. The refinement consists in finding the
attributes or measurable elements and their metrics, for each WS quality property.
These attributes and metrics correspond to the QoS characteristics considered in the
ISO/IEC 13236 standard [5]. Table 4 shows the refinement only for the transactional
WS category, since this is a complex WS type. The other refinements can be obtained

Table 4. Measurement Model: QoS metrics for Transactional WS

W
S

Quality characteristics and
sub-characteristics,

ISO/IEC 9126-1

Attributes
 (QoS characteristics,

ISO/IEC 13236)

Metrics,
ISO/IEC 13236

protection Probability
access control Value or level derived from an access control policy.
data protection Value or level derived from the data integrity policy.
confidentiality Value or level derived from the data confidentiality

policy.

Security

authenticity Value or level derived from the data authentication
policy.

Fu
nc

tio
na

lit
y

Accuracy {addressing, delivery, transfer, transfer
integrity, allowable, release
establishment} error

Probability

fault-tolerance MTBFa =MTTFb + MTTRc
fault-containment Probability
resilience, recovery error Probability

R
el

ia
bi

lit
y Availability

Agreed service time
(channel, connection, processing)

A=MTBF/(MTBF+MTTR) when maintainability is
involved, 0≤A≤1

date/time Any unit of time
time delay: transit, request/reply,
request/confirm

TD=T2- T1

lifetime Any unit of time
remaining lifetime Any unit of time
freshness (or age of data) Any unit of time

Time behavior

capacity Any unit of time
throughput (communication capacity) Units depend on the resource type
processing capacity Rate (bits/seconds, bytes/seconds)

T
ra

ns
ac

ti
on

al
 W

S

E
ff

ic
ie

nc
y

Resource utilization

operation loading Instructions/seconds.

Table notes: a MTBF: mean time between failures, b MTTR: mean time to replace, c MTTF: Mean Time to Failure.

358 F. Losavio, A. Matteo, and R. Rahamut

in a similar way and they will not be shown here to ease the presentation; they are
detailed in [8]. Notice also that Table 4 only shows some of the attributes, to facilitate
legibility. They must be used depending on the application requiring the WS and on
what is to be measured. For more detailed information on attributes and metrics, see
the ISO/IEC13236 [5] standard document.

3 Conclusion and Future Work

The standard specification of the quality properties for a WS has been emphasized
and a process has been proposed for domain analysis, integrating three separate
standards: the WSA critical goals that a family of WS applications must hold [1]; a
quality model for this domain, according to ISO/IEC 9126-1 [4], enriched to
characterize the family of WS, by the quality properties inherent to each functionality.
Finally, this quality model is instantiated for families of WS, considering the
attributes or QoS metrics, according to ISO/IEC 13236 [5]. In this way, three
standards have been related and put into a practical use for domain analysis. Common
understanding among stakeholders has been set by this correspondence. Notice also
that from the standard measurement model, the Service Level Agreement (SLA)
contract can be automatically generated. Ongoing research works are: the
generalization of the quality-based WS domain analysis process to any domain, and
its usage as an initial step of architecture design methods.

References

[1] World Wide Web Consortium. Web Services Architecture Requirements. W3C Working
Group Note (February 11, 2004) Copyright © W3C ® (MIT, ERCIM, Keio) (2004),
http://www.w3.org/TR/wsa-reqs

[2] Berard, E.: Essays in Object-Oriented Software Engineering. Prentice-Hall, Englewood
Cliffs (1992)

[3] Losavio, F., Chirinos, L., Matteo, A., Lévy, N., Ramdane-Cherif, A.: ISO quality standards
to measure architectures. Journal of Systems and Software 72, 209–223 (2004)

[4] ISO/IEC 9126-1, 2, Quality characteristics and guidelines for their use (1, 2), International
Organisation for Standardisation / International Electrotechnical Commission (1999)

[5] ISO/IEC 13236. Quality of Service: Framework. Version 1. International Organisation for
Standardisation / International Electrotechnical Commission (1999)

[6] Menascé, D., Almeida, V.: Cappacity Planning and Performance Modeling. Prentice-Hall,
Englewood Cliffs (2000)

[7] World Wide Web Consortium. Web Service Modeling Ontology. W3C Member
(submission June 3, 2005) W3C Working Draft (October 28, 2002). Copyright © 2005
W3C ®, http://www.w3.org/Submission/WSMO/

[8] Rahamut, R.: Patrón de especificación de contratos de calidad con servicios Web, MSc.
dissertation, Universidad Central de Venezuela (2008)

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 359–362, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Visualizing Software Architectural Design Decisions

Larix Lee and Philippe Kruchten

University of British Columbia
{llee,pbk}@ece.ubc.ca

Abstract. Software architecture can be represented as a set of design decisions.
Exploring and analyzing architectural design decisions are difficult due to how
the decisions are represented and displayed. We describe four visualization as-
pects that apply to architectural design decision exploration and analysis: 1)
tabular listing; 2) decision structure visualization; 3) decision chronology visu-
alization; and 4) decision impact visualization. These aspects address some
situations where visualization helps people understand and utilize decisions.

1 Introduction

Designing software is the process of making many design decisions that defines and
guides the development of a software system. Some of these decisions are architec-
tural design decisions, as they govern the overarching goals and characteristics of the
system being developed. For example, the decision to support which target platforms
or the decision to use a particular communication topology are architectural design
decisions. These decisions intertwine with many other decisions such that changing
one of these decisions may significantly affect other aspects of the design [3], leading
to the view that these decisions are a fundamental part of software architecture [1, 2].

Keeping track of architectural design decisions is important in the later stages of
software development and maintenance, when the original software architects are no
longer available to answer various questions on the design intents and what decisions
they made or had previously rejected. We addressed the issues of decision capture in
a previous work [6]; however, it can be difficult to explore and analyze the captured
decisions effectively. We propose that visualizing the decisions with different as-
pects may help with architectural design decision exploration and analysis by high-
lighting certain decision information that will assist the software architect, designer,
or developer in performing their tasks. We describe these aspects and how they could
contribute to architectural design decision exploration and analysis. We also present
conceptual examples using screenshots of a decision visualization tool [7] that we
developed.

2 Architectural Decision Exploration and Visualization

Exploration and analysis of architectural design decisions depend on how we structure
and represent the information of each decision. Various design decision representation
models have been proposed and these models focus on different aspects or attributes.

360 L. Lee and P. Kruchten

The argumentative design rationale approaches like the Issue-Based Information Sys-
tems [5] focus on the background information, context, and available options at the
time the decision was made, while other models focus more on the decisions’ attrib-
utes and interconnectivities by representing them as first-class entities, such as the ar-
chitecture decision description template [8] and our decision ontology model [4]. We
chose our decision model as it includes aspects of development processes like deci-
sion states (e.g., “idea”, “tentative”, “decided” or “approved”) and it makes decision
relationships explicit. Relationships include how decisions constrain, forbid, enable,
subsume, override, comprise, bind, conflict with, or are alternatives to other decisions.

Exploring and analyzing design decisions also depend on the way the structured
decision information is conveyed. Visualization is often used to explore large net-
works or to understand complex systems like in program comprehension. Visualiza-
tion is also an identified requirement for the decision view of software architecture
[2]. Decision visualization helps people build mental models of the decision space
when the decision set gets large (several hundred architectural design decisions) and
reveals information hidden in a set of design decisions by supporting associations,
groupings, and layout (where we can identify patterns). Since different tasks and
situations focus on different decision attributes, different visualization views into the
decision model can help prioritize or filter out information that is not directly relevant
to a particular exploratory or analytical task. We propose four visualization aspects to
visualize software architectural design decisions: tabular listing, decision structure
visualization, decision chronology visualization, and decision impact visualization.

Tabular Listing. The purpose of this visualization aspect is to provide a quick and
effective way to browse and retrieve information from design decisions. The textual
tabular representation facilitates decision querying and simple decision entry because
the data representation can be easily parsed on a computer screen or on a paper
printout. Although tables provide efficient textual display of decision information, it
is difficult to quickly trace and assess decision structures, relationships, and properties
when the decision sets get large or change relationships frequently. Fig. 1a shows a
list of design decisions for a project. Relationship lists are not shown in this figure.

Decision Structure Visualization. The goal of this aspect is to increase understanding
of the architecture’s decision structure. The decision structure guides the capture,
perusal, and manipulation of decisions and their relationships without sacrificing
comprehension of the architecture the decision represents and the decision
interconnectivities. An effective way to sort and analyze decision information is to
represent the decisions visually using graphs. Decisions are represented as nodes and
the relationships are directed edges, as shown in Fig. 1b. Viewing design as the result
of applying a set of design decisions, the visualization may display decisions, their
attributes, and their relationships separate from the architectural components, that is, a
“decision-only” view of the software architecture.

A significant benefit for graphical structure visualization is its cognitive assistance,
in the context of helping people create a mental map of the decisions. Other benefits
include the ability to detect missing or orphaned decisions that may denote design in-
completeness and the preservation of decision contexts in relation to one another.

 Visualizing Software Architectural Design Decisions 361

(a) (b)

Fig. 1. Screenshots of our visualization tool implementing the tabular listing and graphical
structure visualization: (a) Decision list showing the current set of design decisions, (b) struc-
ture visualization of a set of design decisions and their relationships as a directed graph

(a) (b)

Fig. 2. Screenshots of our visualization tool implementing the chronological and decision im-
pact visualization aspects: (a) Chronological view showing two decision activity periods within
a five-month interval, (b) decision impact view of a design decision (center node of the concen-
tric node circles). Nodes represent decisions and edges represent decision impact-relationships.

Decision Chronology Visualization. The goal of this aspect is to increase under-
standing of the architecture’s dynamic nature. Software design changes over time, so
the design decisions made will also change. The visualization should handle the
evolution of the design decisions by supporting versioning and decision states. Links
to previous decision versions show design progression and traceability.

Keeping track of the history of the changes would better explain the architectural
story and reasons behind the design. Moreover, a timeline view would display deci-
sions that were created or modified during a specified time interval. This would be
beneficial in periodic design reviews by determining what has changed since the last
review or by identifying which areas are still being actively designed. Fig. 2a shows
how the visualization highlights decision-making sessions via decision clusters.

Decision Impact Visualization. The goal of this aspect is to increase the understanding
of the architecture’s dependencies on its set of design decisions. This visualization helps
to visually identify the impact decisions have on each other using decision relationships
and properties. More concisely, the impact visualization aspect utilizes the traceability

362 L. Lee and P. Kruchten

provided by the decision attributes represented in the structural aspect to create a
potential impact matrix upon which software architects, designers, and developers draw
conclusions. Fig 2b visualizes this matrix by showing how one decision (in the center)
can directly impact (innermost concentric node circle) or indirectly impact decisions to
the nth-degree (outer concentric circles).

3 Conclusions

The four proposed aspects to visualize software architectural design decisions provide
a means to explore and analyze large sets of decisions. Visualization helps people
create mental maps of the decisions and it highlights information that is not directly
visible. Moreover, each visualization aspect can highlight or reveal different decision
attributes to support specific tasks, such as risk analysis, system cleanup, or other uses
of architectural decisions [9]. Although we identified four aspects, these aspects do
not cover all situations and there may be other aspects that could reveal more infor-
mation provided by a set of decisions or reveal them more effectively. Using various
decision representation models or discovering other visualization aspects should be
investigated to enhance support for architectural decision exploration and analysis.

References

1. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C., Morri-
son, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg (2004)

2. Duenas, J.C., Capilla, R.: The Decision View of Software Architecture. In: Morrison, R.,
Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 222–230. Springer, Heidelberg
(2005)

3. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
Proc. 5th Working IEEE/IFIP Conference on Software Architecture (WICSA 2005), pp.
109–120. IEEE Computer Society, Pittsburgh (2005)

4. Kruchten, P.: An Ontology of Architectural Design Decisions. In: Bosch, J. (ed.) Proc. 2nd
Groningen Workshop on Software Variability Management, pp. 55–62. Rijksuniversiteit
Groningen, Groningen (2004)

5. Kunz, W., Rittel, H.W.J.: Issues as Elements of Information Systems, Working Paper 131.
Institute of Urban and Regional Development. The University of California at Berkeley,
Berkeley (1970)

6. Lee, L., Kruchten, P.: Customizing the Capture of Software Architectural Design Decisions.
In: Proc. 21st Canadian Conference on Electrical and Computer Engineering, pp. 693–698.
IEEE, Niagara Falls (2008)

7. Lee, L., Kruchten, P.: A Tool to Visualize Architectural Design Decisions. In: Becker, S.,
Plasil, F. (eds.) QoSA 2008. LNCS, vol. 5281, pp. 43–54. Springer, Heidelberg (2008)

8. Tyree, J., Ackerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Soft-
ware 22(2), 19–27 (2005)

9. van der Ven, J.S., Jansen, A.G.J., Avgeriou, P., Hammer, D.K.: Using Architectural Deci-
sions. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214,
pp. 1–10. Springer, Heidelberg (2006)

Author Index

Abou Dib, Ali 148
Aı̈t-Ameur, Yamine 318
Alagar, Vasu 290
Ali Babar, Muhammad 241
Angelov, Samuil 225
Assmann, Martin 346
Atkinson, Colin 2
Avgeriou, Paris 164

Bagheri, Ebrahim 264
Batista, Thais 314
Bellatreche, Ladjel 318
Bernardo, Marco 3
Blay-Fornarino, Mireille 35
Bontà, Edoardo 3
Boucké, Nelis 66
Brito, Patrick H.S. 131

Capilla, Rafael 241
Carśı, José Angel 281
Cavalcanti, Ricardo de Oliveira 50
Chardigny, Sylvain 322
Chatzigiannakis, I. 326
Chavez, Christina 314
Christensen, Henrik Bærbak 196
Costa-Soria, Cristóbal 281
Coulson, Geoff 314
Cuesta, Carlos E. 114, 273

Damaševičius, Robertas 338
de Almeida, Eduardo Santana 50
de Antonio, Angélica 82
de Lemos, Rogério 131

Engels, Gregor 346
Englebert, Vincent 330

Fankam, Chimène 318
Féraud, Louis 148
Filho, Ednaldo Dilorenzo de Souza 50
Fuentes, Lidia 334

Garcia, Alessandro 314
Ghorbani, Ali A. 264
Gilson, Fabian 330

Gomes, Antônio T.A. 314
Graham, T.C. Nicholas 210
Grefen, Paul 225

Hänsel, Christian 298
Hansen, Klaus Marius 196
Helleboogh, Alexander 66
Hilliard, Rich 66
Holvoet, Tom 66

Jean, Stéphane 318

Kamal, Ahmad Waqas 164
Kotonya, Gerald 98
Kruchten, Philippe 359
Kuo, Fei-Ching 306

Lau, Man F. 306
Lee, Larix 359
Liagkou, V. 326
Lisboa, Liana Barachisio 50
López-Sanz, Marcos 273
Losavio, F. 354
Ludzia, Marcin 350

Makki, Majid 264
Männistö, Tomi 180
Marcos, Esperanza 273
Matteo, A. 354
Matulevičius, Raimundas 330
Meira, Silvio Romero de Lemos 50
Méndez, Gonzalo 82
Mohammad, Mubarak 290
Mosser, Sébastien 35
Myllärniemi, Varvana 180

Navarro, Elena 114
Neiva, Danuza F.S. 50

Ober, Ileana 148
Ohlbach, Hans Jürgen 298
Oliveira, Thiago H.B. 50
Oquendo, Flavio 273
Oussalah, Mourad 322

Percebois, Christian 148
Pérez, Jennifer 281

364 Author Index

Perry, Dewayne E. 1
Pinto, Mónica 334
Prehofer, Christian 180

Qayyum, Zawar 273

Raatikainen, Mikko 180
Rahamut, R. 354
Raibulet, Claudia 342
Riveill, Michel 35
Roy, Banani 210
Rubira, Cećılia M.F. 131

Salouros, D. 326
Schouten, Sander 19
Seriai, Abdelhak 322
Spirakis, P. 326

Stoffel, Edgar 298
Štuikys, Vytautas 338

Tamzalit, Dalila 322
Tang, Antony 306
Terra, Ricardo 256
Toldinas, Jevgenijus 338
Trienekens, Jos J.M. 225

Valente, Marco Tulio de Oliveira 256
van der Raadt, Bas 19
van Gurp, Jilles 180
van Vliet, Hans 19

Weyns, Danny 66

Zalewski, Andrzej 350

	Title Page
	Preface
	Organization
	Table of Contents
	Issues in Architecture Evolution: Using Design Intent in Maintenance and Controlling Dynamic Evolution
	Component-Oriented Verification of Software Architectures through Built-in Tests
	Non-synchronous Communications in Process Algebraic Architectural Description Languages
	Introduction
	The Architectural Description Language PADL
	Process Algebra
	PADL Textual and Graphical Notations
	The Semantics for PADL

	Semi-synchronous and Asynchronous Interactions
	Enriching PADL Textual and Graphical Notations
	Semantics of Semi-synchronous Interactions: Additional Rules
	Semantics of Asynchronous Interactions: Implicit AEIs
	Revising PADL Semantics

	Modifying Architectural Checks
	Revising Closed Interacting Semantics
	Adapting Architectural Compatibility
	Adapting Architectural Interoperability
	Example: An Applet-Based Simulator

	Conclusion
	References

	Stakeholder Perception of Enterprise Architecture
	Introduction
	Stakeholders of the EA Function
	EA Function
	EA Stakeholders

	Theoretical Framework
	Stakeholder Satisfaction
	Cognitive Structures
	Means-End Chain Analysis and Laddering Technique

	Case Description
	Organizational Context
	EA Function

	Data Gathering
	Analysis
	Attributes, Consequences and Values
	Hierarchical Value Map

	Discussion
	Conclusions
	References

	Web Services Orchestrations Evolution: A Merge Process for Behavioral Evolution
	Introduction
	Orchestration Behavioral Evolutions
	A High Level Reasoning Model: “ADORE”
	ADORE Formalism: Orchestrations and Evolutions
	Merging Process

	Illustrating Merge Process
	Activities Management: Duplication, Substitution and Unification
	Practicing the Merge Algorithm

	Validation and Implementation
	Related Work and Discussions
	Conclusions and Perspectives
	References

	Evaluating Domain Design Approaches Using Systematic Review
	Introduction
	Planning
	Review Protocol

	DataExtraction
	Data Sources
	Criteria

	Approaches Selection
	Approaches Information

	Results
	Use of Architectural Views
	Activities Adopted for Design
	Variability in Domain Design Approaches
	Adaptation of Existing Processes
	Models for Architecture Documentation
	Approaches Key Points and Drawbacks

	Threats to Validity
	Related Work
	Systematic Review Summary
	Concluding Remarks and Future Work
	References

	Characterizing Relations between Architectural Views
	Introduction
	Basic Architectural Concepts
	A Framework for Characterizing Relations between Views
	Usage
	Scope
	Mechanism
	Discussion

	Reflection on Relations between Views in ISO 42010
	Relations between Views in 42010WD2
	Comparison to Framework

	Conclusion
	References

	How Do Agents Affect Modifiability? AComparison between Two Architectures for Intelligent Virtual Environments for Training
	Introduction
	An Agent-Based Architecture for IVETs
	A Hierarchical Approach
	Discussion

	Architectural Redesign
	Quality Attributes
	Design Decisions
	Resulting Architecture

	Evaluation
	Related Work
	Conclusions and Ongoing Work
	References

	An Architecture-Centric Development Environment for Black-Box Component-Based Systems
	Introduction
	Challenges of Developing Systems from Black-Box Components
	COMPOSE Method
	Component Architecture Description Language - CADL
	Modelling Component Architectures with CADL
	Defining Component Interfaces
	Component Configuration
	Constraint Language

	Developing with COMPOSE
	Case Study
	Defining Tracker Report Requirements
	Tracker Report System Architecture
	Composing Components
	Traceability and Change Impact Analysis

	Conclusions
	References

	Automating the Trace of Architectural Design Decisions and Rationales Using a MDD Approach
	Introduction
	ATRIUM in a Nutshell
	MDD for Tackling Design Decisions and Rationales
	Model-to-Model Transformations to Deal with Traceability Links

	Case Study: Operationalizations in a Teachmover Robot
	MORPHEUS: Supporting the Proposal
	Related Work
	Conclusions and Further Work
	References

	Development of Fault-Tolerant Software Systems Based on Architectural Abstractions
	Introduction
	Fault-Tolerant Architectural Abstractions
	Idealised Fault-Tolerant Architectural Element
	Halt-on-Failure Architectural Element

	A Rigorous Development Process Using Architectural Abstractions
	Case Study: Mining Control System
	Description of the Target System
	Description of the Case Study
	Choosing the iFTE Abstraction
	Choosing the HoFE Abstraction
	Case Study Evaluation
	Overall Evaluation

	Related Work
	Conclusions and Future Work
	References

	Towards Interoperability in Component Based Development with a Family of DSLs
	Introduction
	Components Specified with Related DSLs
	Automating the Unification of a DSL Family
	Category Theory ABC
	Algebraic Specifications of DSLs
	The Category of Formal Specifications of the DSLs of a Family
	Applying the Framework to a Set of Component Specifications
	Openings to Verification and Validation

	Experimental Framework
	DSL Family Overview
	Unifying the Languages Using Existing Tools
	Preserving Properties

	Discussion
	Related Work

	Conclusions
	References

	Modeling Architectural Patterns’ Behavior Using Architectural Primitives
	Introduction
	The Unified Modeling Language in the Behavioral View
	Extending UML to Represent Patterns and Primitives
	Architectural Primitives
	Documenting an Architectural Primitive: Push-Pull
	More Architectural Primitives

	Modeling Architectural Patterns Using Primitives
	Pipe-Filter
	Model-View-Controller
	Client-Server

	Related Work
	Conclusion and Future Work
	References

	Approach for Dynamically Composing Decentralised Service Architectures with Cross-Cutting Constraints
	Introduction
	Case
	Approach
	Architectural Knowledge
	Activities
	Responsibilities and Roles

	Comparison to Previous Work
	Discussion
	Conclusions
	References

	Architectural Prototyping in Industrial Practice
	Introduction
	The SA$\@$Work Project
	Field Studies of Architectural (Prototyping) Practice
	Case Studies of Architectural Prototyping
	Bang and Olufsen
	Jyske Bank
	Systematic Software Engineering
	DSE

	Analysis
	Discussion

	Related Work
	Conclusion
	References

	An Iterative Framework for Software Architecture Recovery: An Experience Report
	Introduction
	Related Work
	Framework
	Automated Software Architecture Extraction
	Software Architecture Analysis
	The Combined Approach

	Case Study and Lessons Learned
	Improved Subsystem Structure
	Better Understanding of the Architecture
	Understanding the Dynamics of the Architecture
	Provision for Comparing Architectures
	Reasonable Tractability
	Team Interactions
	Feedback

	Conclusion
	References

	Towards a Method for the Evaluation of Reference Architectures: Experiences from a Case
	Introduction
	Concrete and Reference Architectures
	Concrete Architectures
	Reference Architectures
	Comparison of Concrete and Reference Architectures

	Evaluation of Architectures
	Evaluation of Concrete Architectures
	Evaluation of Reference Architectures

	An Approach to the Evaluation of Reference Architectures
	The E-contracting Reference Architecture (ERA)
	The Evaluation of ERA
	Generalization of the Approach

	Conclusions
	References

	On the Role of Architectural Design Decisions in Software Product Line Engineering
	Introduction
	Product Line Engineering Features
	Reasoning Models in Product Lines Approaches

	Design Decisions for Product Line Architectures
	Tool Support for Capturing Architectural Design Decisions
	Product-Line Support in ADDSS
	Product-Line Support in PAKME

	Design Rationale Support for Product Line Architectures
	A Unified Data Model for Architectural Design Decisions
	Extended Data Model to Support Product Line Features
	Impact of Product Line Features in the Reasoning Activity

	Related Work
	Conclusions
	References

	Towards a Dependency Constraint Language to Manage Software Architectures
	Introduction
	Dependency Constraint Language
	Case Study
	Related Work
	Conclusions and Future Work
	References

	Automating Architecture Trade-Off Decision Making through a Complex Multi-attribute Decision Process
	Introduction
	ADD$\+$: An Extension to ADD
	Formalizing the Decision Problem
	Stakeholders’ Preference Elicitation
	Case Study
	Concluding Remarks
	References

	Representing Service-Oriented Architectural Models Using \pi-ADL
	Introduction
	Previous Concepts
	MDA and the MIDAS Methodological Framework
	Service-Oriented Architectural Metamodel
	Foundations of \pi-ADL

	Architecture Model of a Case Study with UML and \pi-ADL
	Conclusions and Future Works
	Bibliography

	Managing Dynamic Evolution of Architectural Types
	Introduction
	PRISMA
	Dynamic Evolution of PRISMA Systems
	Type Level
	Instance Level

	Related Works
	Conclusions and Further Work
	References

	TADL - An Architecture Description Language for Trustworthy Component-Based Systems
	Introduction
	Meta Architecture
	TADL
	Conclusion
	References

	L-DSMS – A Local Data Stream Management System
	Introduction
	NodeTypes
	How the L-DSMS Network Operates
	How to Extend L-DSMS
	Managing L-DSMS with VISU-L-DSMS
	Predefined Node Types
	Summary
	References

	Towards Independent Software Architecture Review
	Introduction
	Issues of Existing Techniques
	Independent Software Architecture Review (ISAR)
	Barriers towards an Independent Review
	Supporting Independent Software Architecture Review (ISAR)
	The Benefits of ISAR Approach

	The Next Step
	References

	On the Interplay of Aspects and Dynamic Reconfiguration in a Specification-to-Deployment Environment
	Introduction
	AO-Plastik
	The Architecture Level
	The Runtime Level

	Final Remarks
	References

	Extending the ANSI/SPARC Architecture Database with Explicit Data Semantics: An Ontology-Based Approach
	Introduction
	Ontologies and Databases
	New Capabilities of the Proposed Architecture
	Representation of Non Canonical Concepts
	Conclusion and Future Work
	References

	Search-Based Extraction of Component-Based Architecture from Object-Oriented Systems
	Introduction and Motivation
	Definition of the Search-Space
	Guides of the Architecture Extraction Process
	Conclusion
	References

	A Security Model for Internet-Based Digital Asset Management Systems
	Introduction
	Research Challenges on DAMS
	Security Challenges and Requirements

	Our Proposed DAMS Architecture
	References

	A Large Scope Transformational Approach for Distributed Architecture Design
	Introduction
	Related Work
	IODASS Language
	DADMethod
	Conclusion and Future Work
	References

	Towards a Software Process for Aspect-Oriented Modeling of Quality Attributes
	Introduction
	Motivation and Related Work
	A Process for AO Modeling of Quality Attributes
	Process Support Using AO-ADL
	Conclusions
	References

	Domain Ontology-Based Generative Component Design Using Feature Diagrams and Meta-programming Techniques
	Introduction
	Basics of Feature Diagrams and Motivation of Their Extension
	Encoding of EFDs as Ontology-Based Generative Components
	Conclusions
	References

	Facets of Adaptivity
	Introduction
	Why Is Adaptivity Used?
	Where Is Adaptivity Used?
	Definition and Open Issues
	Conclusions
	References

	Transition to Service-Oriented Enterprise Architecture
	Introduction
	Enterprise Architecture and Service-Oriented Architecture
	Relation between SOA and EA

	Service-Oriented Enterprise Architecture
	Emerging Research Questions
	References

	Diagrammatic Modeling of Architectural Decisions
	Introduction
	MAD – Models and Notation
	Conclusion Further Research
	References

	Web Services Domain Analysis Based on Quality Standards
	Introduction
	Analysis of the WS Domain
	Conclusion and Future Work
	References

	Visualizing Software Architectural Design Decisions
	Introduction
	Architectural Decision Exploration and Visualization
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

